Abstract

This paper reports on characterization results of a single-photon avalanche diode (SPAD) array in standard CMOS 150nm technology. The array is composed by 25 (5 × 5) SPADs, based on p+/n-well active junction along with a retrograde deep n-well guard ring. The square-shaped SPAD has a 10µm active diameter and 15.6µm pitch size, achieving a 39.9% array fill factor. Characterization results show a good breakdown voltage uniformity (40mV max-min) within each chip and 17mV/°C temperature coefficient. The median DCR is 0.4Hz/µm2, and the afterpulsing probability is 0.85% for a dead time of 150ns at 3V excess bias voltage. The peak PDP is 31% at 450nm wavelength and a good uniformity (1.1% standard deviation) is observed for the array at 5V excess bias. The single SPADs exhibit a timing jitter of 52ps (FWHM) and 42ps (FWHM) under a 468-nm and a 831-nm laser, respectively. The crosstalk probability as a function of pixel-to-pixel distance and excess bias voltage is presented, and random telegraph signal (RTS) noise is also discussed in detail.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Hesong Xu, Lucio Pancheri, Gian-Franco Dalla Betta, and David Stoppa, "Design and characterization of a p+/n-well SPAD array in 150nm CMOS process: erratum," Opt. Express 25, 19083-19083 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-16-19083

OSA Recommended Articles
A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device

Myung-Jae Lee, Pengfei Sun, and Edoardo Charbon
Opt. Express 23(10) 13200-13209 (2015)

A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

Shingo Mandai, Matthew W. Fishburn, Yuki Maruyama, and Edoardo Charbon
Opt. Express 20(6) 5849-5857 (2012)

Timing and probability of crosstalk in a dense CMOS SPAD array in pulsed TOF applications

Sahba Jahromi and Juha Kostamovaara
Opt. Express 26(16) 20622-20632 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
    [Crossref]
  2. N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy,” Opt. Express 23(5), 5653–5669 (2015).
    [Crossref] [PubMed]
  3. C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 × 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
    [Crossref]
  4. A. Rochas, A. R. Pauchard, P.-A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
    [Crossref]
  5. M. A. Karami, H. J. Yoon, and E. Charbon, “Single-photon Avalanche Diodes in sub-100nm Standard CMOS Technologies,” in Proc. Intl. Image Sens. Workshop IISW (2011).
  6. J. A. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
    [Crossref]
  7. L. Pancheri, G.-F. Dalla Betta, L. H. Campos Braga, H. Xu, and D. Stoppa, “A single-photon avalanche diode test chip in 150nm CMOS technology,” in 2014 International Conference on Microelectronic Test Structures (ICMTS) (2014), pp. 161–164.
    [Crossref]
  8. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [Crossref] [PubMed]
  9. H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” IEEE Electron Device Lett. 27(11), 887–889 (2006).
    [Crossref]
  10. R. K. Henderson, L. A. Grant, and J. A. Richardson, “Reduction of Band-to-band Tunneling in Deep-submicron CMOS Single Photon Avalanche Photodiodes,” in Proc. IEEE Int. Image Sens. Workshop (2009), pp. 1–4.
  11. E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron Dev. 60(12), 4014–4019 (2013).
    [Crossref]
  12. N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
    [Crossref]
  13. C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
    [Crossref]
  14. E. Vilella, J. García, O. Alonso, and A. Diéguez, “Dynamic range extension of a SPAD imager using non-uniformity correction techniques,” IEEE Sens. J. 16(9), 2988–2992 (2016).
    [Crossref]
  15. “Micro Photon Devices - PDM,” http://www.micro-photon-devices.com/Products/Spad-by-Technology/Custom-Silicon/PDM-PDF .
  16. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16(12), 8381–8394 (2008).
    [Crossref] [PubMed]
  17. E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
    [Crossref]
  18. A. Vila, E. Vilella, O. Alonso, and A. Dieguez, “Crosstalk-free single photon avalanche photodiodes located in a shared well,” IEEE Electron Device Lett. 35(1), 99–101 (2014).
    [Crossref]
  19. M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, and E. Charbon, “RTS noise characterization in single-photon avalanche diodes,” IEEE Electron Device Lett. 31(7), 692–694 (2010).
    [Crossref]
  20. M.-J. Lee, P. Sun, and E. Charbon, “A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device,” Opt. Express 23(10), 13200–13209 (2015).
    [Crossref] [PubMed]
  21. M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
    [Crossref]
  22. E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
    [Crossref]
  23. E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
    [Crossref]
  24. T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83um pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 8.1.1–8.1.4.

2016 (1)

E. Vilella, J. García, O. Alonso, and A. Diéguez, “Dynamic range extension of a SPAD imager using non-uniformity correction techniques,” IEEE Sens. J. 16(9), 2988–2992 (2016).
[Crossref]

2015 (2)

2014 (2)

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

A. Vila, E. Vilella, O. Alonso, and A. Dieguez, “Crosstalk-free single photon avalanche photodiodes located in a shared well,” IEEE Electron Device Lett. 35(1), 99–101 (2014).
[Crossref]

2013 (2)

E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron Dev. 60(12), 4014–4019 (2013).
[Crossref]

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 × 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

2012 (2)

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

2011 (1)

J. A. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

2010 (1)

M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, and E. Charbon, “RTS noise characterization in single-photon avalanche diodes,” IEEE Electron Device Lett. 31(7), 692–694 (2010).
[Crossref]

2009 (1)

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

2008 (2)

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16(12), 8381–8394 (2008).
[Crossref] [PubMed]

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

2006 (1)

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” IEEE Electron Device Lett. 27(11), 887–889 (2006).
[Crossref]

2003 (1)

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

2002 (1)

A. Rochas, A. R. Pauchard, P.-A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

1996 (1)

Abbas, T. A.

T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83um pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 8.1.1–8.1.4.

Almer, O.

T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83um pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 8.1.1–8.1.4.

Alonso, O.

E. Vilella, J. García, O. Alonso, and A. Diéguez, “Dynamic range extension of a SPAD imager using non-uniformity correction techniques,” IEEE Sens. J. 16(9), 2988–2992 (2016).
[Crossref]

A. Vila, E. Vilella, O. Alonso, and A. Dieguez, “Crosstalk-free single photon avalanche photodiodes located in a shared well,” IEEE Electron Device Lett. 35(1), 99–101 (2014).
[Crossref]

Ameer-Beg, S.

Aurite, S.

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

Besse, P.-A.

A. Rochas, A. R. Pauchard, P.-A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Braga, L. H. C.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

Campos Braga, L. H.

L. Pancheri, G.-F. Dalla Betta, L. H. Campos Braga, H. Xu, and D. Stoppa, “A single-photon avalanche diode test chip in 150nm CMOS technology,” in 2014 International Conference on Microelectronic Test Structures (ICMTS) (2014), pp. 161–164.
[Crossref]

Carrara, L.

M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, and E. Charbon, “RTS noise characterization in single-photon avalanche diodes,” IEEE Electron Device Lett. 31(7), 692–694 (2010).
[Crossref]

Charbon, E.

M.-J. Lee, P. Sun, and E. Charbon, “A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device,” Opt. Express 23(10), 13200–13209 (2015).
[Crossref] [PubMed]

M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, and E. Charbon, “RTS noise characterization in single-photon avalanche diodes,” IEEE Electron Device Lett. 31(7), 692–694 (2010).
[Crossref]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

M. A. Karami, H. J. Yoon, and E. Charbon, “Single-photon Avalanche Diodes in sub-100nm Standard CMOS Technologies,” in Proc. Intl. Image Sens. Workshop IISW (2011).

Condorelli, G.

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

Cova, S.

Dalla Betta, G.-F.

L. Pancheri, G.-F. Dalla Betta, L. H. Campos Braga, H. Xu, and D. Stoppa, “A single-photon avalanche diode test chip in 150nm CMOS technology,” in 2014 International Conference on Microelectronic Test Structures (ICMTS) (2014), pp. 161–164.
[Crossref]

Dieguez, A.

A. Vila, E. Vilella, O. Alonso, and A. Dieguez, “Crosstalk-free single photon avalanche photodiodes located in a shared well,” IEEE Electron Device Lett. 35(1), 99–101 (2014).
[Crossref]

Diéguez, A.

E. Vilella, J. García, O. Alonso, and A. Diéguez, “Dynamic range extension of a SPAD imager using non-uniformity correction techniques,” IEEE Sens. J. 16(9), 2988–2992 (2016).
[Crossref]

Dutton, N. A. W.

T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83um pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 8.1.1–8.1.4.

Esener, S. C.

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” IEEE Electron Device Lett. 27(11), 887–889 (2006).
[Crossref]

Fallica, G.

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

Ferri, A.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
[Crossref]

Finkelstein, H.

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” IEEE Electron Device Lett. 27(11), 887–889 (2006).
[Crossref]

Fishburn, M.

M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, and E. Charbon, “RTS noise characterization in single-photon avalanche diodes,” IEEE Electron Device Lett. 31(7), 692–694 (2010).
[Crossref]

Folkerts, H. O.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

García, J.

E. Vilella, J. García, O. Alonso, and A. Diéguez, “Dynamic range extension of a SPAD imager using non-uniformity correction techniques,” IEEE Sens. J. 16(9), 2988–2992 (2016).
[Crossref]

Gasparini, L.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

Gersbach, M.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Ghioni, M.

Gola, A.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
[Crossref]

Grant, L.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Grant, L. A.

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

J. A. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

R. K. Henderson, L. A. Grant, and J. A. Richardson, “Reduction of Band-to-band Tunneling in Deep-submicron CMOS Single Photon Avalanche Photodiodes,” in Proc. IEEE Int. Image Sens. Workshop (2009), pp. 1–4.

Hardillier, S.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Henderson, R.

N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy,” Opt. Express 23(5), 5653–5669 (2015).
[Crossref] [PubMed]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Henderson, R. K.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron Dev. 60(12), 4014–4019 (2013).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

J. A. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

R. K. Henderson, L. A. Grant, and J. A. Richardson, “Reduction of Band-to-band Tunneling in Deep-submicron CMOS Single Photon Avalanche Photodiodes,” in Proc. IEEE Int. Image Sens. Workshop (2009), pp. 1–4.

T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83um pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 8.1.1–8.1.4.

Henrion, Y.

T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83um pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 8.1.1–8.1.4.

Hoekstra, W.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

Hsu, M. J.

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” IEEE Electron Device Lett. 27(11), 887–889 (2006).
[Crossref]

Ingargiola, A.

Kagami, M.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 × 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

Karami, M. A.

M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, and E. Charbon, “RTS noise characterization in single-photon avalanche diodes,” IEEE Electron Device Lett. 31(7), 692–694 (2010).
[Crossref]

M. A. Karami, H. J. Yoon, and E. Charbon, “Single-photon Avalanche Diodes in sub-100nm Standard CMOS Technologies,” in Proc. Intl. Image Sens. Workshop IISW (2011).

Kato, S.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 × 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

Krstajic, N.

Labanca, I.

Lacaita, A.

Lee, M.-J.

Levitt, J.

Lombardo, S.

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

Loukianova, N. V.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

Maas, J. P. V.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

Marangoni, S.

Massari, N.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

Matsubara, H.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 × 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

Mazaleyrat, E.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Mazzillo, M.

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

Mierop, A. J.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

Niclass, C.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 × 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, and E. Charbon, “RTS noise characterization in single-photon avalanche diodes,” IEEE Electron Device Lett. 31(7), 692–694 (2010).
[Crossref]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Pancheri, L.

L. Pancheri, G.-F. Dalla Betta, L. H. Campos Braga, H. Xu, and D. Stoppa, “A single-photon avalanche diode test chip in 150nm CMOS technology,” in 2014 International Conference on Microelectronic Test Structures (ICMTS) (2014), pp. 161–164.
[Crossref]

Pantic, D.

A. Rochas, A. R. Pauchard, P.-A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Pauchard, A. R.

A. Rochas, A. R. Pauchard, P.-A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Pellegrini, S.

T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83um pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 8.1.1–8.1.4.

Perenzoni, M.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

Picciotto, A.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
[Crossref]

Piemonte, C.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
[Crossref]

Poland, S.

Popovic, R. S.

A. Rochas, A. R. Pauchard, P.-A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Prijic, Z.

A. Rochas, A. R. Pauchard, P.-A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Pro, T.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
[Crossref]

Rech, I.

Renshaw, D.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Richardson, J.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Richardson, J. A.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

J. A. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

R. K. Henderson, L. A. Grant, and J. A. Richardson, “Reduction of Band-to-band Tunneling in Deep-submicron CMOS Single Photon Avalanche Photodiodes,” in Proc. IEEE Int. Image Sens. Workshop (2009), pp. 1–4.

Rimini, E.

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

Rochas, A.

A. Rochas, A. R. Pauchard, P.-A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Roks, E.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

Samori, C.

Sanfilippo, D.

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

Sciacca, E.

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

Serra, N.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
[Crossref]

Soga, M.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 × 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

Spinelli, R.

Stoppa, D.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

L. Pancheri, G.-F. Dalla Betta, L. H. Campos Braga, H. Xu, and D. Stoppa, “A single-photon avalanche diode test chip in 150nm CMOS technology,” in 2014 International Conference on Microelectronic Test Structures (ICMTS) (2014), pp. 161–164.
[Crossref]

Sun, P.

Tarolli, A.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
[Crossref]

Theuwissen, A. J. P.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

Verbugt, D. W. E.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

Vila, A.

A. Vila, E. Vilella, O. Alonso, and A. Dieguez, “Crosstalk-free single photon avalanche photodiodes located in a shared well,” IEEE Electron Device Lett. 35(1), 99–101 (2014).
[Crossref]

Vilella, E.

E. Vilella, J. García, O. Alonso, and A. Diéguez, “Dynamic range extension of a SPAD imager using non-uniformity correction techniques,” IEEE Sens. J. 16(9), 2988–2992 (2016).
[Crossref]

A. Vila, E. Vilella, O. Alonso, and A. Dieguez, “Crosstalk-free single photon avalanche photodiodes located in a shared well,” IEEE Electron Device Lett. 35(1), 99–101 (2014).
[Crossref]

Walker, R.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

Webster, E. A. G.

E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron Dev. 60(12), 4014–4019 (2013).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

J. A. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

Xu, H.

L. Pancheri, G.-F. Dalla Betta, L. H. Campos Braga, H. Xu, and D. Stoppa, “A single-photon avalanche diode test chip in 150nm CMOS technology,” in 2014 International Conference on Microelectronic Test Structures (ICMTS) (2014), pp. 161–164.
[Crossref]

Yoon, H. J.

M. A. Karami, H. J. Yoon, and E. Charbon, “Single-photon Avalanche Diodes in sub-100nm Standard CMOS Technologies,” in Proc. Intl. Image Sens. Workshop IISW (2011).

Zappa, F.

Zorzi, N.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
[Crossref]

Appl. Opt. (1)

IEEE Electron Device Lett. (6)

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” IEEE Electron Device Lett. 27(11), 887–889 (2006).
[Crossref]

E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-Mode avalanche photodiode arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008).
[Crossref]

A. Vila, E. Vilella, O. Alonso, and A. Dieguez, “Crosstalk-free single photon avalanche photodiodes located in a shared well,” IEEE Electron Device Lett. 35(1), 99–101 (2014).
[Crossref]

M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, and E. Charbon, “RTS noise characterization in single-photon avalanche diodes,” IEEE Electron Device Lett. 31(7), 692–694 (2010).
[Crossref]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

IEEE J. Solid-State Circuits (2)

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 × 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49(1), 301–314 (2014).
[Crossref]

IEEE Sens. J. (1)

E. Vilella, J. García, O. Alonso, and A. Diéguez, “Dynamic range extension of a SPAD imager using non-uniformity correction techniques,” IEEE Sens. J. 16(9), 2988–2992 (2016).
[Crossref]

IEEE Trans. Electron Dev. (4)

A. Rochas, A. R. Pauchard, P.-A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron Dev. 60(12), 4014–4019 (2013).
[Crossref]

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Dev. 50(1), 77–83 (2003).
[Crossref]

J. A. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

Opt. Express (3)

Solid-State Electron. (1)

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Other (6)

L. Pancheri, G.-F. Dalla Betta, L. H. Campos Braga, H. Xu, and D. Stoppa, “A single-photon avalanche diode test chip in 150nm CMOS technology,” in 2014 International Conference on Microelectronic Test Structures (ICMTS) (2014), pp. 161–164.
[Crossref]

T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83um pitch in 3D-stacked CMOS technology,” in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 8.1.1–8.1.4.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro, N. Serra, A. Tarolli, and N. Zorzi, “Development of an automatic procedure for the characterization of silicon photomultipliers,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 428–432.
[Crossref]

R. K. Henderson, L. A. Grant, and J. A. Richardson, “Reduction of Band-to-band Tunneling in Deep-submicron CMOS Single Photon Avalanche Photodiodes,” in Proc. IEEE Int. Image Sens. Workshop (2009), pp. 1–4.

M. A. Karami, H. J. Yoon, and E. Charbon, “Single-photon Avalanche Diodes in sub-100nm Standard CMOS Technologies,” in Proc. Intl. Image Sens. Workshop IISW (2011).

“Micro Photon Devices - PDM,” http://www.micro-photon-devices.com/Products/Spad-by-Technology/Custom-Silicon/PDM-PDF .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Cross section of the p+/n-well SPAD with a deep n-well guard ring. The shadowed areas indicate approximately the avalanche region.
Fig. 2
Fig. 2 The SPAD pixel and array readout.
Fig. 3
Fig. 3 Count rate as a function of bias voltage for 25 SPADs and linear fit used to estimate the breakdown voltage.
Fig. 4
Fig. 4 The breakdown voltage as a function of temperature for three SPADs of one SPAD array.
Fig. 5
Fig. 5 Cumulative DCR histogram for 250 SPADs.
Fig. 6
Fig. 6 DCR versus temperature for selected SPADs at 3V excess bias; the dashed lines indicate Arrhenius equation fit.
Fig. 7
Fig. 7 The DCR versus temperature for a low-DCR SPAD at different excess bias, and the dashed lines indicate Arrhenius equation fit.
Fig. 8
Fig. 8 The primary pulse (PP) and Afterpulsing (AP) behaviour in the passive quenching circuit.
Fig. 9
Fig. 9 Inter-arrival time histogram measured at 3V excess bias with 50ns dead time.
Fig. 10
Fig. 10 Histogram of pulse widths, for SPAD of 50ns dead time, at VEX = 3V, room temperature.
Fig. 11
Fig. 11 Afterpulsing as a function of excess bias with 50ns dead time.
Fig. 12
Fig. 12 Afterpulsing as a function of dead time at VEX = 3V.
Fig. 13
Fig. 13 Photon detection probability (PDP) as a function of wavelength at different excess bias at room temperature.
Fig. 14
Fig. 14 Timing jitter of SPAD and the reference MPD device at 4V excess bias voltage in response of 468-nm and 831-nm laser pulses.
Fig. 15
Fig. 15 Crosstalk probability mapping for 24 SPADs with reference to SPAD (1,1) at 4.5V excess bias.
Fig. 16
Fig. 16 Crosstalk probability as a function of excess bias voltage.
Fig. 17
Fig. 17 Different forms of RTS in two SPADs and normal behavior of SPAD#3 at 5V excess bias.
Fig. 18
Fig. 18 DCR histogram of the three SPADs at 5V excess bias.

Tables (1)

Tables Icon

Table 1 Performance summary and comparison with SPADs fabricated in advanced CMOS technologies.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DCR=Aexp( E A k B T ).

Metrics