Abstract

A few-layer graphitic carbon nitride (g-CN) nanosheet film on an yttrium aluminum garnet substrate was fabricated and employed as saturable absorber for a passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 μm. Under an absorbed pump power of 3.89 W at a pump wavelength of 1.15 μm, a maximum average output power of 101 mW was realized with a pulse duration of 420 ns and a repetition rate of 93 kHz. Even shorter pulse durations of 385 ns were obtained at a reduced output coupler transmission.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched Ho,Pr:LiLuF4 bulk laser at 2.95 μm using WS2 saturable absorbers

Lei Guo, Tao Li, Shuaiyi Zhang, Mingjian Wang, Shengzhi Zhao, Kejian Yang, Dechun Li, and Zhengyu Yan
Opt. Mater. Express 7(6) 2090-2095 (2017)

WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm

Xinxing Liu, Shuaiyi Zhang, Zhengyu Yan, Lei Guo, Xiaoyan Fan, Fei Lou, Maorong Wang, Peng Gao, Guanghai Guo, Tao Li, Kejian Yang, Jian Li, and Jianqiu Xu
Opt. Mater. Express 8(5) 1213-1220 (2018)

Passive Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a Cr:ZnS saturable absorber

J. M. Serres, P. Loiko, X. Mateos, V. Jambunathan, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz
Appl. Opt. 55(14) 3757-3763 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
    [Crossref]
  2. K. L. Vodopyanov, “Mid-infrared optical parametric generator with extra-wide (3-19-μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells,” J. Opt. Soc. Am. B 16(9), 1579–1586 (1999).
    [Crossref]
  3. H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [Crossref]
  4. M. Fan, T. Li, G. Li, H. Ma, S. Zhao, K. Yang, and C. Kränkel, “Graphitic C3N4 as a new saturable absorber for the mid-infrared spectral range,” Opt. Lett. 42(2), 286–289 (2017).
    [Crossref] [PubMed]
  5. W. S. Rabinovich, S. R. Bowman, B. J. Feldman, and M. J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
    [Crossref]
  6. T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
    [Crossref] [PubMed]
  7. H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, and J. He, “Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95 μm,” Opt. Lett. 42(4), 699–702 (2017).
    [Crossref] [PubMed]
  8. J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
    [Crossref] [PubMed]
  9. Y. Y. Bu, Z. Y. Chen, and W. B. Li, “Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material,” Appl. Catal. B 144, 622–630 (2014).
    [Crossref]
  10. Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
    [Crossref]
  11. B. Kiskan, J. Zhang, X. Wang, M. Antonietti, and Y. Yagci, “Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization,” ACS Macro Lett. 1(5), 546–549 (2012).
    [Crossref]
  12. X. H. Li, J. S. Chen, X. Wang, J. Sun, and M. Antonietti, “Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons,” J. Am. Chem. Soc. 133(21), 8074–8077 (2011).
    [Crossref] [PubMed]
  13. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
    [Crossref]
  14. J. Q. Wen, J. Xie, X. B. Chen, and X. Li, “A review on g-C3N4-based photocatalysts,” Appl. Surf. Sci. 391, 72–123 (2017).
    [Crossref]
  15. Q. Huang, J. G. Yu, S. W. Cao, C. Cui, and B. Cheng, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
    [Crossref]
  16. X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135(1), 18–21 (2013).
    [Crossref] [PubMed]
  17. Y. Zhou, M. Zhao, S. Wang, C. X. Hu, Y. Wang, S. Yan, Y. Li, J. Xu, Y. Tang, L. F. Gao, Q. Wang, and H. L. Zhang, “Developing carbon-nitride nanosheets for mode-locking ytterbium fiber lasers,” Opt. Lett. 41(6), 1221–1224 (2016).
    [Crossref] [PubMed]
  18. X. C. Gao, S. X. Li, T. Li, G. Q. Li, and H. Y. Ma, “g-C3N4 as a new saturable absorber for the passively Q-switched Nd:LLF laser at 1.3 μm,” Photonics Res. 5(1), 33–36 (2017).
    [Crossref]
  19. S. C. Yan, Z. S. Li, and Z. G. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25(17), 10397–10401 (2009).
    [Crossref] [PubMed]
  20. H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
    [Crossref]
  21. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  22. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013).
    [Crossref] [PubMed]
  23. P.-T. Tai, S. Di Pan, Y.-G. Wang, and J. Tang, “Saturable absorber using single wall carbon nanotube-poly (vinylalcohol) deposited by the vertical evaporation technique,” Opt. Commun. 284(5), 1303–1306 (2011).
    [Crossref]
  24. D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm,” Appl. Opt. 37(21), 4933–4935 (1998).
    [Crossref] [PubMed]
  25. P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
    [Crossref] [PubMed]
  26. S. D. Jackson, “Singly Ho3+-doped fluoride fiber laser operating at 2.92 μm,” Electron. Lett. 40(22), 1400–1401 (2004).
    [Crossref]
  27. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett. 29(4), 334–336 (2004).
    [Crossref] [PubMed]

2017 (4)

M. Fan, T. Li, G. Li, H. Ma, S. Zhao, K. Yang, and C. Kränkel, “Graphitic C3N4 as a new saturable absorber for the mid-infrared spectral range,” Opt. Lett. 42(2), 286–289 (2017).
[Crossref] [PubMed]

H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, and J. He, “Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95 μm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref] [PubMed]

J. Q. Wen, J. Xie, X. B. Chen, and X. Li, “A review on g-C3N4-based photocatalysts,” Appl. Surf. Sci. 391, 72–123 (2017).
[Crossref]

X. C. Gao, S. X. Li, T. Li, G. Q. Li, and H. Y. Ma, “g-C3N4 as a new saturable absorber for the passively Q-switched Nd:LLF laser at 1.3 μm,” Photonics Res. 5(1), 33–36 (2017).
[Crossref]

2016 (1)

2015 (2)

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Q. Huang, J. G. Yu, S. W. Cao, C. Cui, and B. Cheng, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

2014 (3)

2013 (2)

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013).
[Crossref] [PubMed]

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135(1), 18–21 (2013).
[Crossref] [PubMed]

2012 (3)

B. Kiskan, J. Zhang, X. Wang, M. Antonietti, and Y. Yagci, “Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization,” ACS Macro Lett. 1(5), 546–549 (2012).
[Crossref]

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
[Crossref] [PubMed]

2011 (2)

P.-T. Tai, S. Di Pan, Y.-G. Wang, and J. Tang, “Saturable absorber using single wall carbon nanotube-poly (vinylalcohol) deposited by the vertical evaporation technique,” Opt. Commun. 284(5), 1303–1306 (2011).
[Crossref]

X. H. Li, J. S. Chen, X. Wang, J. Sun, and M. Antonietti, “Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons,” J. Am. Chem. Soc. 133(21), 8074–8077 (2011).
[Crossref] [PubMed]

2010 (2)

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

2009 (1)

S. C. Yan, Z. S. Li, and Z. G. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25(17), 10397–10401 (2009).
[Crossref] [PubMed]

2004 (3)

S. D. Jackson, “Singly Ho3+-doped fluoride fiber laser operating at 2.92 μm,” Electron. Lett. 40(22), 1400–1401 (2004).
[Crossref]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett. 29(4), 334–336 (2004).
[Crossref] [PubMed]

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

2002 (1)

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

1999 (1)

1998 (1)

1991 (1)

W. S. Rabinovich, S. R. Bowman, B. J. Feldman, and M. J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

Abramski, K. M.

Antonietti, M.

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

B. Kiskan, J. Zhang, X. Wang, M. Antonietti, and Y. Yagci, “Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization,” ACS Macro Lett. 1(5), 546–549 (2012).
[Crossref]

X. H. Li, J. S. Chen, X. Wang, J. Sun, and M. Antonietti, “Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons,” J. Am. Chem. Soc. 133(21), 8074–8077 (2011).
[Crossref] [PubMed]

Bekman, H. H. P. T.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Bex, P.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Blechert, S.

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

Bowman, S. R.

W. S. Rabinovich, S. R. Bowman, B. J. Feldman, and M. J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Bu, Y. Y.

Y. Y. Bu, Z. Y. Chen, and W. B. Li, “Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material,” Appl. Catal. B 144, 622–630 (2014).
[Crossref]

Cao, S. W.

Q. Huang, J. G. Yu, S. W. Cao, C. Cui, and B. Cheng, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

Chen, J. S.

X. H. Li, J. S. Chen, X. Wang, J. Sun, and M. Antonietti, “Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons,” J. Am. Chem. Soc. 133(21), 8074–8077 (2011).
[Crossref] [PubMed]

Chen, L. X.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Chen, X.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

Chen, X. B.

J. Q. Wen, J. Xie, X. B. Chen, and X. Li, “A review on g-C3N4-based photocatalysts,” Appl. Surf. Sci. 391, 72–123 (2017).
[Crossref]

Chen, Z. Y.

Y. Y. Bu, Z. Y. Chen, and W. B. Li, “Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material,” Appl. Catal. B 144, 622–630 (2014).
[Crossref]

Cheng, B.

Q. Huang, J. G. Yu, S. W. Cao, C. Cui, and B. Cheng, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

Cui, C.

Q. Huang, J. G. Yu, S. W. Cao, C. Cui, and B. Cheng, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

Di Pan, S.

P.-T. Tai, S. Di Pan, Y.-G. Wang, and J. Tang, “Saturable absorber using single wall carbon nanotube-poly (vinylalcohol) deposited by the vertical evaporation technique,” Opt. Commun. 284(5), 1303–1306 (2011).
[Crossref]

Dolega, G.

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

Du, J.

Fan, M.

Fang, Y.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Feldman, B. J.

W. S. Rabinovich, S. R. Bowman, B. J. Feldman, and M. J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

Feng, D.

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Gao, L. F.

Gao, X. C.

X. C. Gao, S. X. Li, T. Li, G. Q. Li, and H. Y. Ma, “g-C3N4 as a new saturable absorber for the passively Q-switched Nd:LLF laser at 1.3 μm,” Photonics Res. 5(1), 33–36 (2017).
[Crossref]

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Guo, W. L.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Guo, X. B.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Ha, C. S.

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

Hang, Y.

He, J.

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Hu, C. X.

Hu, T.

Huang, Q.

Q. Huang, J. G. Yu, S. W. Cao, C. Cui, and B. Cheng, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

Hudson, D. D.

Jackson, S. D.

Jia, X. P.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Kiskan, B.

B. Kiskan, J. Zhang, X. Wang, M. Antonietti, and Y. Yagci, “Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization,” ACS Macro Lett. 1(5), 546–549 (2012).
[Crossref]

Krajewska, A.

Kränkel, C.

Li, G.

Li, G. Q.

X. C. Gao, S. X. Li, T. Li, G. Q. Li, and H. Y. Ma, “g-C3N4 as a new saturable absorber for the passively Q-switched Nd:LLF laser at 1.3 μm,” Photonics Res. 5(1), 33–36 (2017).
[Crossref]

Li, Q.

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

Li, S. Q.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Li, S. X.

X. C. Gao, S. X. Li, T. Li, G. Q. Li, and H. Y. Ma, “g-C3N4 as a new saturable absorber for the passively Q-switched Nd:LLF laser at 1.3 μm,” Photonics Res. 5(1), 33–36 (2017).
[Crossref]

Li, T.

Li, W. B.

Y. Y. Bu, Z. Y. Chen, and W. B. Li, “Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material,” Appl. Catal. B 144, 622–630 (2014).
[Crossref]

Li, X.

J. Q. Wen, J. Xie, X. B. Chen, and X. Li, “A review on g-C3N4-based photocatalysts,” Appl. Surf. Sci. 391, 72–123 (2017).
[Crossref]

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Li, X. H.

X. H. Li, J. S. Chen, X. Wang, J. Sun, and M. Antonietti, “Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons,” J. Am. Chem. Soc. 133(21), 8074–8077 (2011).
[Crossref] [PubMed]

Li, Y.

Li, Z. S.

S. C. Yan, Z. S. Li, and Z. G. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25(17), 10397–10401 (2009).
[Crossref] [PubMed]

Lin, S.

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

Lipner, G.

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

Loh, K. P.

Low, J.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Lu, S. B.

Ma, H.

Ma, H. A.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Ma, H. Y.

X. C. Gao, S. X. Li, T. Li, G. Q. Li, and H. Y. Ma, “g-C3N4 as a new saturable absorber for the passively Q-switched Nd:LLF laser at 1.3 μm,” Photonics Res. 5(1), 33–36 (2017).
[Crossref]

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Möhlmann, L.

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

Nie, H.

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Page, R.

Pan, B.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135(1), 18–21 (2013).
[Crossref] [PubMed]

Park, S. S.

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

Pasternak, I.

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Rabinovich, W. S.

W. S. Rabinovich, S. R. Bowman, B. J. Feldman, and M. J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

Schleijpen, H. M. A.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Small, D. L.

Sobon, G.

Sotor, J.

Strupinski, W.

Sun, J.

X. H. Li, J. S. Chen, X. Wang, J. Sun, and M. Antonietti, “Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons,” J. Am. Chem. Soc. 133(21), 8074–8077 (2011).
[Crossref] [PubMed]

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Tai, P.-T.

P.-T. Tai, S. Di Pan, Y.-G. Wang, and J. Tang, “Saturable absorber using single wall carbon nanotube-poly (vinylalcohol) deposited by the vertical evaporation technique,” Opt. Commun. 284(5), 1303–1306 (2011).
[Crossref]

Tang, D. Y.

Tang, J.

P.-T. Tai, S. Di Pan, Y.-G. Wang, and J. Tang, “Saturable absorber using single wall carbon nanotube-poly (vinylalcohol) deposited by the vertical evaporation technique,” Opt. Commun. 284(5), 1303–1306 (2011).
[Crossref]

Tang, Y.

van den Heuvel, J. C.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

van Putten, F. J. M.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Vodopyanov, K. L.

Wang, H.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135(1), 18–21 (2013).
[Crossref] [PubMed]

Wang, Q.

Wang, S.

Wang, X.

B. Kiskan, J. Zhang, X. Wang, M. Antonietti, and Y. Yagci, “Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization,” ACS Macro Lett. 1(5), 546–549 (2012).
[Crossref]

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

X. H. Li, J. S. Chen, X. Wang, J. Sun, and M. Antonietti, “Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons,” J. Am. Chem. Soc. 133(21), 8074–8077 (2011).
[Crossref] [PubMed]

Wang, Y.

Wang, Y. D.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Wang, Y.-G.

P.-T. Tai, S. Di Pan, Y.-G. Wang, and J. Tang, “Saturable absorber using single wall carbon nanotube-poly (vinylalcohol) deposited by the vertical evaporation technique,” Opt. Commun. 284(5), 1303–1306 (2011).
[Crossref]

Wen, J. Q.

J. Q. Wen, J. Xie, X. B. Chen, and X. Li, “A review on g-C3N4-based photocatalysts,” Appl. Surf. Sci. 391, 72–123 (2017).
[Crossref]

Wen, S. C.

Winings, M. J.

W. S. Rabinovich, S. R. Bowman, B. J. Feldman, and M. J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

Wu, Q.

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

Wu, Z.

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

Xiao, J.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Xie, J.

J. Q. Wen, J. Xie, X. B. Chen, and X. Li, “A review on g-C3N4-based photocatalysts,” Appl. Surf. Sci. 391, 72–123 (2017).
[Crossref]

Xie, X.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135(1), 18–21 (2013).
[Crossref] [PubMed]

Xie, Y.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135(1), 18–21 (2013).
[Crossref] [PubMed]

Xu, J.

Yagci, Y.

B. Kiskan, J. Zhang, X. Wang, M. Antonietti, and Y. Yagci, “Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization,” ACS Macro Lett. 1(5), 546–549 (2012).
[Crossref]

Yan, S.

Yan, S. C.

S. C. Yan, Z. S. Li, and Z. G. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25(17), 10397–10401 (2009).
[Crossref] [PubMed]

Yang, J.

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

Yang, K.

Yu, J.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Yu, J. G.

Q. Huang, J. G. Yu, S. W. Cao, C. Cui, and B. Cheng, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Zelmon, D. E.

Zhang, B.

Zhang, G.

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Zhang, H.

Zhang, H. L.

Zhang, J.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135(1), 18–21 (2013).
[Crossref] [PubMed]

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

B. Kiskan, J. Zhang, X. Wang, M. Antonietti, and Y. Yagci, “Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization,” ACS Macro Lett. 1(5), 546–549 (2012).
[Crossref]

Zhang, L.

Zhang, P.

Zhang, S.

Zhang, X.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135(1), 18–21 (2013).
[Crossref] [PubMed]

Zhao, D.

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

Zhao, M.

Zhao, S.

Zheng, J.

Zhou, Y.

Zhu, P. W.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Zou, G. T.

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Zou, Z. G.

S. C. Yan, Z. S. Li, and Z. G. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25(17), 10397–10401 (2009).
[Crossref] [PubMed]

ACS Macro Lett. (1)

B. Kiskan, J. Zhang, X. Wang, M. Antonietti, and Y. Yagci, “Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization,” ACS Macro Lett. 1(5), 546–549 (2012).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, “Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light,” Angew. Chem. Int. Ed. Engl. 51(13), 3183–3187 (2012).
[Crossref] [PubMed]

Appl. Catal. B (1)

Y. Y. Bu, Z. Y. Chen, and W. B. Li, “Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material,” Appl. Catal. B 144, 622–630 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Surf. Sci. (2)

J. Q. Wen, J. Xie, X. B. Chen, and X. Li, “A review on g-C3N4-based photocatalysts,” Appl. Surf. Sci. 391, 72–123 (2017).
[Crossref]

Q. Huang, J. G. Yu, S. W. Cao, C. Cui, and B. Cheng, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

Electron. Lett. (1)

S. D. Jackson, “Singly Ho3+-doped fluoride fiber laser operating at 2.92 μm,” Electron. Lett. 40(22), 1400–1401 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

W. S. Rabinovich, S. R. Bowman, B. J. Feldman, and M. J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

J. Am. Chem. Soc. (2)

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135(1), 18–21 (2013).
[Crossref] [PubMed]

X. H. Li, J. S. Chen, X. Wang, J. Sun, and M. Antonietti, “Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons,” J. Am. Chem. Soc. 133(21), 8074–8077 (2011).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, and P. Bex, “High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4,” J. Phys. Condens. Matter 14(44), 11269–11273 (2002).
[Crossref]

Langmuir (1)

S. C. Yan, Z. S. Li, and Z. G. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25(17), 10397–10401 (2009).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Nano Res. (1)

Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C. S. Ha, and D. Zhao, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture,” Nano Res. 3(9), 632–642 (2010).
[Crossref]

Opt. Commun. (1)

P.-T. Tai, S. Di Pan, Y.-G. Wang, and J. Tang, “Saturable absorber using single wall carbon nanotube-poly (vinylalcohol) deposited by the vertical evaporation technique,” Opt. Commun. 284(5), 1303–1306 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Photonics Res. (1)

X. C. Gao, S. X. Li, T. Li, G. Q. Li, and H. Y. Ma, “g-C3N4 as a new saturable absorber for the passively Q-switched Nd:LLF laser at 1.3 μm,” Photonics Res. 5(1), 33–36 (2017).
[Crossref]

Proc. SPIE (1)

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) SEM image and (b) XRD pattern of the synthesized g-CN powder.
Fig. 2
Fig. 2 (a) TEM picture, (b) AFM image and (c) height profile diagrams of the few-layer g-CN dispersions.
Fig. 3
Fig. 3 Optical transmission spectrum of g-CN nanosheets on a 40 mm × 20 mm YAG substrate; inset: nonlinear transmission of the g-CN-SA at 2.84 μm.
Fig. 4
Fig. 4 Scheme of the passively Q-switched Ho,Pr:LiLuF4 laser, inset: the photograph of the home-made g-CN-SA.
Fig. 5
Fig. 5 (a) cw output power measured as a function of absorbed pump power. (b) M2 factors and the spectrum from the cw laser at maximum output power.
Fig. 6
Fig. 6 (a) Input-output characteristics of the g-CN-SA passively Q-switched laser. (b) M2 factors and a typical emission spectrum from the Q-switched laser at the maximum average output power.
Fig. 7
Fig. 7 Top: Evolution of the pulse repetition rate, pulse duration and pulse energy vs. absorbed pump power; bottom: typical Q-switched pulse trains and temporal pulse profile for different OC transmissions.

Metrics