Abstract

We theoretically investigate non-phasematched broadband THz amplification in dispersive chi(3) media. A short 100 fs pump pulse is interacting with a temporally matched second harmonic pulse and a weak THz signal through the four wave mixing process and a significant broadband THz amplification and reshaping is observed. The pulse evolution dynamics is explored by numerically solving a set of generalized Nonlinear Schroedinger equations. The influence of incident pulse chirp, pulse duration and the role of wavelength, THz seed frequency and losses are evaluated separately. It is found that a careful choice of incident parameters can provide a broadband THz output and/or a significant increase of THz peak power.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chirped-pulse amplification of ultraviolet femtosecond pulses by use of Ce3+:LiCaAlF6 as a broadband, solid-state gain medium

Zhenlin Liu, Toshimasa Kozeki, Yuji Suzuki, Nobuhiko Sarukura, Kiyoshi Shimamura, Tsuguo Fukuda, Masahiro Hirano, and Hideo Hosono
Opt. Lett. 26(5) 301-303 (2001)

Yb3+:LuAlO3 crystal as a gain medium for efficient broadband chirped pulse regenerative amplification

Alexander Rudenkov, Viktor Kisel, Anatol Yasukevich, Karine Hovhannesyan, Ashot Petrosyan, and Nikolay Kuleshov
Opt. Lett. 42(13) 2415-2418 (2017)

Broadband THz amplification and superradiant spontaneous emission in a guided FEL

E. C. Snively, J. Xiong, P. Musumeci, and A. Gover
Opt. Express 27(15) 20221-20230 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  2. D. L. Woolard, J. O. Jensen, R. J. Hwu, and M. S. Shur, Terahertz Science And Technology For Military And Security Applications (World Scientific, 2007).
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  4. P. Shumyatsky and R. R. Alfano, “Terahertz sources,” J. Biomed. Opt. 16(3), 033001 (2011).
    [Crossref] [PubMed]
  5. H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
    [Crossref]
  6. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25(16), 1210–1212 (2000).
    [Crossref] [PubMed]
  7. H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
    [Crossref]
  8. K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett. 32(20), 2990–2992 (2007).
    [Crossref] [PubMed]
  9. H. Wu, H. Liu, N. Huang, Q. Sun, and J. Wen, “High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing,” Appl. Opt. 50(27), 5338–5343 (2011).
    [Crossref] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic Press, 2001).
  11. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref] [PubMed]
  12. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
    [Crossref]
  13. F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics,” Opt. Express 22(10), 12475–12485 (2014).
    [Crossref] [PubMed]
  14. N. Aflakian, N. Yang, T. LaFave, R. M. Henderson, K. K. O, and D. L. MacFarlane, “Square dielectric THz waveguides,” Opt. Express 24(13), 14951–14959 (2016).
    [Crossref] [PubMed]
  15. H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20(28), 29507–29517 (2012).
    [Crossref] [PubMed]
  16. M. Bache, “Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses,” J. Opt. Soc. Am. B 26(3), 460–470 (2009).
    [Crossref]
  17. E. Noskovicova, D. Lorenc, L. Slusna, and D. Velic, “Femtosecond Kerr index of cyclic Olefin Co/Polymers for THz nonlinear optics,” Opt. Mater. 60, 559–563 (2016).
    [Crossref]
  18. M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
    [Crossref]
  19. G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
    [Crossref]
  20. E. Noskovicova, M. Wenclawiak, D. Lorenc, J. Darmo, L. Slušná, and D. Velič, “Terahertz time-domain spectroscopy of polymers: plasma vs. PCA,” in 20th SCPOC Conference on Wave and Quantum Aspects of Contemporary Optics (2016).

2016 (3)

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

N. Aflakian, N. Yang, T. LaFave, R. M. Henderson, K. K. O, and D. L. MacFarlane, “Square dielectric THz waveguides,” Opt. Express 24(13), 14951–14959 (2016).
[Crossref] [PubMed]

E. Noskovicova, D. Lorenc, L. Slusna, and D. Velic, “Femtosecond Kerr index of cyclic Olefin Co/Polymers for THz nonlinear optics,” Opt. Mater. 60, 559–563 (2016).
[Crossref]

2014 (1)

2013 (1)

M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
[Crossref]

2012 (1)

2011 (3)

P. Shumyatsky and R. R. Alfano, “Terahertz sources,” J. Biomed. Opt. 16(3), 033001 (2011).
[Crossref] [PubMed]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

H. Wu, H. Liu, N. Huang, Q. Sun, and J. Wen, “High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing,” Appl. Opt. 50(27), 5338–5343 (2011).
[Crossref] [PubMed]

2009 (2)

2007 (3)

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett. 32(20), 2990–2992 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2002 (1)

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

2001 (1)

G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

2000 (1)

Adam, A. J.

Aflakian, N.

Alfano, R. R.

P. Shumyatsky and R. R. Alfano, “Terahertz sources,” J. Biomed. Opt. 16(3), 033001 (2011).
[Crossref] [PubMed]

Bache, M.

Bang, O.

Bao, H.

Bonn, M.

Chai, X.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Cook, D. J.

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

D’Angelo, F.

Darmo, J.

E. Noskovicova, M. Wenclawiak, D. Lorenc, J. Darmo, L. Slušná, and D. Velič, “Terahertz time-domain spectroscopy of polymers: plasma vs. PCA,” in 20th SCPOC Conference on Wave and Quantum Aspects of Contemporary Optics (2016).

Ferachou, D.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Hafez, H. A.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Henderson, R. M.

Hochstrasser, R. M.

Huang, N.

Ibrahim, A.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Iwaszczuk, K.

M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
[Crossref]

Jen, A. K.-Y.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Jepsen, P. U.

Kawase, K.

Khanarian, G.

G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Kreß, M.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

LaFave, T.

Lavrinenko, A. V.

M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
[Crossref]

Liu, H.

Löffler, T.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

Lorenc, D.

E. Noskovicova, D. Lorenc, L. Slusna, and D. Velic, “Femtosecond Kerr index of cyclic Olefin Co/Polymers for THz nonlinear optics,” Opt. Mater. 60, 559–563 (2016).
[Crossref]

E. Noskovicova, M. Wenclawiak, D. Lorenc, J. Darmo, L. Slušná, and D. Velič, “Terahertz time-domain spectroscopy of polymers: plasma vs. PCA,” in 20th SCPOC Conference on Wave and Quantum Aspects of Contemporary Optics (2016).

Luo, J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

MacFarlane, D. L.

Malureanu, R.

M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
[Crossref]

Mics, Z.

Mondal, S.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Nielsen, K.

Noskovicova, E.

E. Noskovicova, D. Lorenc, L. Slusna, and D. Velic, “Femtosecond Kerr index of cyclic Olefin Co/Polymers for THz nonlinear optics,” Opt. Mater. 60, 559–563 (2016).
[Crossref]

E. Noskovicova, M. Wenclawiak, D. Lorenc, J. Darmo, L. Slušná, and D. Velič, “Terahertz time-domain spectroscopy of polymers: plasma vs. PCA,” in 20th SCPOC Conference on Wave and Quantum Aspects of Contemporary Optics (2016).

O, K. K.

Ozaki, T.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Planken, P. C.

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Popescu, A.

M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
[Crossref]

Rasmussen, H. K.

Ropagnol, X.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Roskos, H. G.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

Savastru, D.

M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
[Crossref]

Shumyatsky, P.

P. Shumyatsky and R. R. Alfano, “Terahertz sources,” J. Biomed. Opt. 16(3), 033001 (2011).
[Crossref] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Slusna, L.

E. Noskovicova, D. Lorenc, L. Slusna, and D. Velic, “Femtosecond Kerr index of cyclic Olefin Co/Polymers for THz nonlinear optics,” Opt. Mater. 60, 559–563 (2016).
[Crossref]

Slušná, L.

E. Noskovicova, M. Wenclawiak, D. Lorenc, J. Darmo, L. Slušná, and D. Velič, “Terahertz time-domain spectroscopy of polymers: plasma vs. PCA,” in 20th SCPOC Conference on Wave and Quantum Aspects of Contemporary Optics (2016).

Strikwerda, A. C.

M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
[Crossref]

Suizu, K.

Sun, Q.

Thomson, M. D.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Turchinovich, D.

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Velic, D.

E. Noskovicova, D. Lorenc, L. Slusna, and D. Velic, “Femtosecond Kerr index of cyclic Olefin Co/Polymers for THz nonlinear optics,” Opt. Mater. 60, 559–563 (2016).
[Crossref]

E. Noskovicova, M. Wenclawiak, D. Lorenc, J. Darmo, L. Slušná, and D. Velič, “Terahertz time-domain spectroscopy of polymers: plasma vs. PCA,” in 20th SCPOC Conference on Wave and Quantum Aspects of Contemporary Optics (2016).

Wen, J.

Wenclawiak, M.

E. Noskovicova, M. Wenclawiak, D. Lorenc, J. Darmo, L. Slušná, and D. Velič, “Terahertz time-domain spectroscopy of polymers: plasma vs. PCA,” in 20th SCPOC Conference on Wave and Quantum Aspects of Contemporary Optics (2016).

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Wu, H.

Yang, N.

Zalkovskij, M.

M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
[Crossref]

Zhou, X.-H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko, and P. U. Jepsen, “Terahertz-induced Kerr effect in amorphous chalcogenide glasses,” Appl. Phys. Lett. 103(22), 221102 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

J. Appl. Phys. (1)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

J. Biomed. Opt. (1)

P. Shumyatsky and R. R. Alfano, “Terahertz sources,” J. Biomed. Opt. 16(3), 033001 (2011).
[Crossref] [PubMed]

J. Opt. (1)

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Eng. (1)

G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

E. Noskovicova, D. Lorenc, L. Slusna, and D. Velic, “Femtosecond Kerr index of cyclic Olefin Co/Polymers for THz nonlinear optics,” Opt. Mater. 60, 559–563 (2016).
[Crossref]

Other (3)

D. L. Woolard, J. O. Jensen, R. J. Hwu, and M. S. Shur, Terahertz Science And Technology For Military And Security Applications (World Scientific, 2007).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic Press, 2001).

E. Noskovicova, M. Wenclawiak, D. Lorenc, J. Darmo, L. Slušná, and D. Velič, “Terahertz time-domain spectroscopy of polymers: plasma vs. PCA,” in 20th SCPOC Conference on Wave and Quantum Aspects of Contemporary Optics (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 FWM based THz generation. Reverse sum frequency generation (a), nondegenarate FWM (b) and degenerate FWM (c).
Fig. 2
Fig. 2 Pump, idler and THz seed propagation dynamics for a 800 nm pump pulse. THz spectral (a) and temporal (b) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c). The original THz pulse seed temporal profile and spectrum (dotted). Pump (d) and idler (e) spectral scaling with the propagation distance.
Fig. 3
Fig. 3 THz seed pulse propagation dynamics for a 1030 nm pump pulse. Spectral (a) and temporal (b) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c).
Fig. 4
Fig. 4 THz seed pulse propagation dynamics for a 1300 nm pump pulse. Spectral (a) and temporal (b) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c).
Fig. 5
Fig. 5 THz seed pulse propagation dynamics for a 1550 nm pump pulse. Spectral (a) and temporal (b) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c).
Fig. 6
Fig. 6 THz seed pulse propagation dynamics for a 1 THz seed pulse. Spectral (a) and temporal (b) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c).
Fig. 7
Fig. 7 THz seed pulse propagation dynamics for a 4 THz seed pulse. Spectral (a) and temporal (b) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c).
Fig. 8
Fig. 8 THz seed pulse propagation dynamics for a 500 fs (upper row) and 1000 fs (lower row) pump pulse. Spectral (a, d) and temporal (b, e) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c, f).
Fig. 9
Fig. 9 THz seed pulse propagation dynamics for a 500 fs (upper row) and 1000 fs (lower row) idler pulse. Spectral (a, d) and temporal (b, e) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c, f).
Fig. 10
Fig. 10 THz seed pulse propagation dynamics for a pump pulse chirp parameter of + 5 (upper row) and −5 (lower row). Spectral (a, d) and temporal (b, e) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c, f). See text for further details.
Fig. 11
Fig. 11 THz seed pulse propagation dynamics for an idler pulse chirp parameter of + 5 (upper row) and −5 (lower row). Spectral (a, d) and temporal (b, e) scaling with the propagation distance and the resulting THz pulse (red) and spectrum (blue) (c,f). See text for further details.
Fig. 12
Fig. 12 THz peak power (blue) and THz pulse energy (red) as a function of: pump wavelength (a), THz seed frequency (b), pump pulse duration (c) and idler pulse duration (d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A 1 ( z,t ) z = n=1 i n+1 n! β n1 n t n A 1 ( z,t )+i ω 1 n 2 c [ f 11 | A 1 ( z,t ) | 2 +2 k=2 4 f k1 | A k (z,t) | 2 ] A 1 ( z,t ) +2 f 1234 A 2 * ( z,t ) A 3 ( z,t ) A 4 ( z,t ) e iϕz A 2 ( z,t ) z = n=1 i n+1 n! β n2 n t n A 2 ( z,t )+i ω 2 n 2 c [ f 22 | A 2 ( z,t ) | 2 +2 k=1,k2 4 f k2 | A k (z,t) | 2 ] A 2 ( z,t ) +2 f 2134 A 1 * ( z,t ) A 3 ( z,t ) A 4 ( z,t ) e iϕz A 3 ( z,t ) z = n=1 i n+1 n! β n3 n t n A 3 ( z,t )+i ω 3 n 2 c [ f 33 | A 3 ( z,t ) | 2 +2 k=1,k3 4 f k3 | A k (z,t) | 2 ] A 3 ( z,t ) +2 f 3412 A 1 ( z,t ) A 2 ( z,t ) A 4 * ( z,t ) e iϕz A 4 ( z,t ) z = n=1 i n+1 n! β n4 n t n A 4 ( z,t )+i ω 4 n 2 c [ f 44 | A 4 ( z,t ) | 2 +2 k=1 3 f k4 | A k (z,t) | 2 ] A 4 ( z,t ) +2 f 4312 A 1 ( z,t ) A 2 ( z,t ) A 3 * ( z,t ) e iϕz
β nk = ( d n β n ) ω= ω k k= 1,...4
Δω T 0 = ( 1+ C 2 ) 1/2

Metrics