Abstract

As an important component in the surface radiation budget, surface upwelling longwave radiation (SULR) is an outcome of the land surface energy exchange and mainly represents the capability of thermal radiation from the surface of the Earth. Existing satellite-derived SULR products are too coarse to support high-resolution numerical models, and their accuracy needs to be improved. In this study, an equivalent temperature is introduced through which a “split-window” atmospheric correction algorithm is developed for MODIS data to estimate the instantaneous clear-sky SULR. It is a simple and feasible method that is particularly applicable to MODIS data to acquire relatively high precision SULR under clear skies from which qualified water vapor contents (WVC) and thermal channel brightness temperatures are available. The root mean square errors (RMSEs) are less than 13 W/m2 for all WVC sub-ranges with the viewing zenith angle (VZA) less than 30°, or for all sub-ranges with the VZA less than 60° and the WVC less than 3.5 g/cm2. Also, applications and comparisons with the LST-emissivity method are made by using ground measurements which are collected from the network of surface radiation budget network data (SURFRAD) at the moment of MODIS overpass. Results show that the proposed model has high computational efficiency to estimate SULR from MODIS cloud-free data.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Estimation of land surface temperature from three thermal infrared channels of MODIS data for dust aerosol skies

Xiwei Fan, Gaozhong Nie, Hua Wu, and Bo-Hui Tang
Opt. Express 26(4) 4148-4165 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Niemelä, P. Räisänen, and H. Savijärvi, “Comparison of surface radiative flux parameterizations: Part I: Longwave radiation,” Atmos. Res. 58(1), 1–18 (2001).
    [Crossref]
  2. G. Yan, T. Wang, Z. Jiao, X. Mu, J. Zhao, and L. Chen, “Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain,” Remote Sens. Environ. 172, 15–27 (2016).
    [Crossref]
  3. Z. Jiao, G. Yan, J. Zhao, T. Wang, and L. Chen, “Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan plateau,” Remote Sens. Environ. 162, 221–237 (2015).
    [Crossref]
  4. B.-H. Tang, Z.-L. Li, and R. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
    [Crossref]
  5. C. Soci, C. Fischer, and A. Horányi, “Sensitivity of high-resolution forecasts using the adjoint technique at the 10-km scale,” Mon. Weather Rev. 134(3), 772–790 (2006).
    [Crossref]
  6. H. Guan, A. Tremblay, G. A. Isaac, K. B. Strawbridge, and C. M. Banic, “Numerical simulations of stratus clouds and their sensitivity to radiation-A RACE case study,” J. Appl. Meteorol. 39(11), 1881–1893 (2000).
    [Crossref]
  7. W. Wang, S. Liang, and J. A. Augustine, “Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data,” IEEE T. Geosci. Remote. 47(5), 1559–1570 (2009).
    [Crossref]
  8. A. Nie, Q. Liu, and J. Cheng, “Estimating clear-sky land surface longwave upwelling radiation from MODIS data using a hybrid method,” Int. J. Remote Sens. 37(8), 1747–1761 (2016).
    [Crossref]
  9. G. Bisht, V. Venturini, S. Islam, and L. Jiang, “Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectro-radiometer) data for clear sky days,” Remote Sens. Environ. 97(1), 52–67 (2005).
    [Crossref]
  10. B.-H. Tang and Z.-L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
    [Crossref]
  11. T. Hu, Q. Liu, Y. Du, H. Li, H. Wang, and B. Cao, “Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe basin,” Remote Sens. 7(5), 6489–6509 (2015).
    [Crossref]
  12. B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
    [Crossref]
  13. H. Wu, X. Zhang, S. Liang, H. Yang, and G. Zhou, “Estimation of clear sky land surface longwave radiation from MODIS data products by merging multiple models,” J. Geophys. Res. 117(D22), 103–112 (2012).
    [Crossref]
  14. W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1,” IEEE T. Geo-sci. Remote. 36(4), 1088–1100 (1998).
    [Crossref]
  15. A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
    [Crossref]
  16. T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
    [Crossref]
  17. B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-Window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).
    [Crossref] [PubMed]
  18. S. Liang, “Quantitative Remote Sensing of Land Surfaces (Wiley-Interscience, 2004).
  19. C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
    [Crossref]
  20. R. L. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite‐derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116(D8), 353–366 (2011).
    [Crossref]
  21. X. F. Li, “Application of nonlinear multi-channel algorithms for estimating sea surface temperature with NOAA-14 AVHRR data,” Chin. J. Oceanology Limnol. 18(3), 199–207 (2000).
    [Crossref]

2016 (3)

G. Yan, T. Wang, Z. Jiao, X. Mu, J. Zhao, and L. Chen, “Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain,” Remote Sens. Environ. 172, 15–27 (2016).
[Crossref]

A. Nie, Q. Liu, and J. Cheng, “Estimating clear-sky land surface longwave upwelling radiation from MODIS data using a hybrid method,” Int. J. Remote Sens. 37(8), 1747–1761 (2016).
[Crossref]

T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
[Crossref]

2015 (3)

T. Hu, Q. Liu, Y. Du, H. Li, H. Wang, and B. Cao, “Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe basin,” Remote Sens. 7(5), 6489–6509 (2015).
[Crossref]

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Z. Jiao, G. Yan, J. Zhao, T. Wang, and L. Chen, “Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan plateau,” Remote Sens. Environ. 162, 221–237 (2015).
[Crossref]

2012 (1)

H. Wu, X. Zhang, S. Liang, H. Yang, and G. Zhou, “Estimation of clear sky land surface longwave radiation from MODIS data products by merging multiple models,” J. Geophys. Res. 117(D22), 103–112 (2012).
[Crossref]

2011 (1)

R. L. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite‐derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116(D8), 353–366 (2011).
[Crossref]

2009 (1)

W. Wang, S. Liang, and J. A. Augustine, “Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data,” IEEE T. Geosci. Remote. 47(5), 1559–1570 (2009).
[Crossref]

2008 (2)

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-Window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

B.-H. Tang and Z.-L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
[Crossref]

2006 (2)

B.-H. Tang, Z.-L. Li, and R. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

C. Soci, C. Fischer, and A. Horányi, “Sensitivity of high-resolution forecasts using the adjoint technique at the 10-km scale,” Mon. Weather Rev. 134(3), 772–790 (2006).
[Crossref]

2005 (3)

G. Bisht, V. Venturini, S. Islam, and L. Jiang, “Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectro-radiometer) data for clear sky days,” Remote Sens. Environ. 97(1), 52–67 (2005).
[Crossref]

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

2001 (1)

S. Niemelä, P. Räisänen, and H. Savijärvi, “Comparison of surface radiative flux parameterizations: Part I: Longwave radiation,” Atmos. Res. 58(1), 1–18 (2001).
[Crossref]

2000 (2)

H. Guan, A. Tremblay, G. A. Isaac, K. B. Strawbridge, and C. M. Banic, “Numerical simulations of stratus clouds and their sensitivity to radiation-A RACE case study,” J. Appl. Meteorol. 39(11), 1881–1893 (2000).
[Crossref]

X. F. Li, “Application of nonlinear multi-channel algorithms for estimating sea surface temperature with NOAA-14 AVHRR data,” Chin. J. Oceanology Limnol. 18(3), 199–207 (2000).
[Crossref]

1998 (1)

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1,” IEEE T. Geo-sci. Remote. 36(4), 1088–1100 (1998).
[Crossref]

Acharya, P. K.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Alder-Golden, S. M.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Anderson, G. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Augustine, J. A.

W. Wang, S. Liang, and J. A. Augustine, “Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data,” IEEE T. Geosci. Remote. 47(5), 1559–1570 (2009).
[Crossref]

Banic, C. M.

H. Guan, A. Tremblay, G. A. Isaac, K. B. Strawbridge, and C. M. Banic, “Numerical simulations of stratus clouds and their sensitivity to radiation-A RACE case study,” J. Appl. Meteorol. 39(11), 1881–1893 (2000).
[Crossref]

Barnes, W. L.

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1,” IEEE T. Geo-sci. Remote. 36(4), 1088–1100 (1998).
[Crossref]

Berk, A.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Bernstein, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Bi, Y.

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-Window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

Bian, Z. J.

T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
[Crossref]

Bisht, G.

G. Bisht, V. Venturini, S. Islam, and L. Jiang, “Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectro-radiometer) data for clear sky days,” Remote Sens. Environ. 97(1), 52–67 (2005).
[Crossref]

Borel, C.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Cao, B.

T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
[Crossref]

T. Hu, Q. Liu, Y. Du, H. Li, H. Wang, and B. Cao, “Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe basin,” Remote Sens. 7(5), 6489–6509 (2015).
[Crossref]

Caselles, V.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Chen, L.

G. Yan, T. Wang, Z. Jiao, X. Mu, J. Zhao, and L. Chen, “Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain,” Remote Sens. Environ. 172, 15–27 (2016).
[Crossref]

Z. Jiao, G. Yan, J. Zhao, T. Wang, and L. Chen, “Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan plateau,” Remote Sens. Environ. 162, 221–237 (2015).
[Crossref]

Cheng, J.

A. Nie, Q. Liu, and J. Cheng, “Estimating clear-sky land surface longwave upwelling radiation from MODIS data using a hybrid method,” Int. J. Remote Sens. 37(8), 1747–1761 (2016).
[Crossref]

Chetwynd, J. H.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Coll, C.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Cooley, T.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Du, Y.

T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
[Crossref]

T. Hu, Q. Liu, Y. Du, H. Li, H. Wang, and B. Cao, “Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe basin,” Remote Sens. 7(5), 6489–6509 (2015).
[Crossref]

Fischer, C.

C. Soci, C. Fischer, and A. Horányi, “Sensitivity of high-resolution forecasts using the adjoint technique at the 10-km scale,” Mon. Weather Rev. 134(3), 772–790 (2006).
[Crossref]

Fox, M.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Galve, J. M.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Gardner, J. A.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Guan, H.

H. Guan, A. Tremblay, G. A. Isaac, K. B. Strawbridge, and C. M. Banic, “Numerical simulations of stratus clouds and their sensitivity to radiation-A RACE case study,” J. Appl. Meteorol. 39(11), 1881–1893 (2000).
[Crossref]

Han, Y.

R. L. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite‐derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116(D8), 353–366 (2011).
[Crossref]

Hoke, M. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Horányi, A.

C. Soci, C. Fischer, and A. Horányi, “Sensitivity of high-resolution forecasts using the adjoint technique at the 10-km scale,” Mon. Weather Rev. 134(3), 772–790 (2006).
[Crossref]

Hu, T.

T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
[Crossref]

T. Hu, Q. Liu, Y. Du, H. Li, H. Wang, and B. Cao, “Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe basin,” Remote Sens. 7(5), 6489–6509 (2015).
[Crossref]

Isaac, G. A.

H. Guan, A. Tremblay, G. A. Isaac, K. B. Strawbridge, and C. M. Banic, “Numerical simulations of stratus clouds and their sensitivity to radiation-A RACE case study,” J. Appl. Meteorol. 39(11), 1881–1893 (2000).
[Crossref]

Islam, S.

G. Bisht, V. Venturini, S. Islam, and L. Jiang, “Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectro-radiometer) data for clear sky days,” Remote Sens. Environ. 97(1), 52–67 (2005).
[Crossref]

Jiang, L.

G. Bisht, V. Venturini, S. Islam, and L. Jiang, “Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectro-radiometer) data for clear sky days,” Remote Sens. Environ. 97(1), 52–67 (2005).
[Crossref]

Jiao, Z.

G. Yan, T. Wang, Z. Jiao, X. Mu, J. Zhao, and L. Chen, “Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain,” Remote Sens. Environ. 172, 15–27 (2016).
[Crossref]

Z. Jiao, G. Yan, J. Zhao, T. Wang, and L. Chen, “Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan plateau,” Remote Sens. Environ. 162, 221–237 (2015).
[Crossref]

Lee, J.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Lewis, P. E.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Li, H.

T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
[Crossref]

T. Hu, Q. Liu, Y. Du, H. Li, H. Wang, and B. Cao, “Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe basin,” Remote Sens. 7(5), 6489–6509 (2015).
[Crossref]

Li, X. F.

X. F. Li, “Application of nonlinear multi-channel algorithms for estimating sea surface temperature with NOAA-14 AVHRR data,” Chin. J. Oceanology Limnol. 18(3), 199–207 (2000).
[Crossref]

Li, Z.-L.

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

B.-H. Tang and Z.-L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
[Crossref]

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-Window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

B.-H. Tang, Z.-L. Li, and R. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

Liang, S.

H. Wu, X. Zhang, S. Liang, H. Yang, and G. Zhou, “Estimation of clear sky land surface longwave radiation from MODIS data products by merging multiple models,” J. Geophys. Res. 117(D22), 103–112 (2012).
[Crossref]

W. Wang, S. Liang, and J. A. Augustine, “Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data,” IEEE T. Geosci. Remote. 47(5), 1559–1570 (2009).
[Crossref]

Liu, Q.

A. Nie, Q. Liu, and J. Cheng, “Estimating clear-sky land surface longwave upwelling radiation from MODIS data using a hybrid method,” Int. J. Remote Sens. 37(8), 1747–1761 (2016).
[Crossref]

T. Hu, Q. Liu, Y. Du, H. Li, H. Wang, and B. Cao, “Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe basin,” Remote Sens. 7(5), 6489–6509 (2015).
[Crossref]

R. L. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite‐derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116(D8), 353–366 (2011).
[Crossref]

Liu, Q. H.

T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
[Crossref]

Lockwood, R. B.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Mu, X.

G. Yan, T. Wang, Z. Jiao, X. Mu, J. Zhao, and L. Chen, “Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain,” Remote Sens. Environ. 172, 15–27 (2016).
[Crossref]

Muratov, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Nerry, F.

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Niclòs, R.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Nie, A.

A. Nie, Q. Liu, and J. Cheng, “Estimating clear-sky land surface longwave upwelling radiation from MODIS data using a hybrid method,” Int. J. Remote Sens. 37(8), 1747–1761 (2016).
[Crossref]

Niemelä, S.

S. Niemelä, P. Räisänen, and H. Savijärvi, “Comparison of surface radiative flux parameterizations: Part I: Longwave radiation,” Atmos. Res. 58(1), 1–18 (2001).
[Crossref]

Pagano, T. S.

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1,” IEEE T. Geo-sci. Remote. 36(4), 1088–1100 (1998).
[Crossref]

Räisänen, P.

S. Niemelä, P. Räisänen, and H. Savijärvi, “Comparison of surface radiative flux parameterizations: Part I: Longwave radiation,” Atmos. Res. 58(1), 1–18 (2001).
[Crossref]

Rivas, R.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Salomonson, V. V.

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1,” IEEE T. Geo-sci. Remote. 36(4), 1088–1100 (1998).
[Crossref]

Sánchez, J. M.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Savijärvi, H.

S. Niemelä, P. Räisänen, and H. Savijärvi, “Comparison of surface radiative flux parameterizations: Part I: Longwave radiation,” Atmos. Res. 58(1), 1–18 (2001).
[Crossref]

Shao, K.

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Soci, C.

C. Soci, C. Fischer, and A. Horányi, “Sensitivity of high-resolution forecasts using the adjoint technique at the 10-km scale,” Mon. Weather Rev. 134(3), 772–790 (2006).
[Crossref]

Strawbridge, K. B.

H. Guan, A. Tremblay, G. A. Isaac, K. B. Strawbridge, and C. M. Banic, “Numerical simulations of stratus clouds and their sensitivity to radiation-A RACE case study,” J. Appl. Meteorol. 39(11), 1881–1893 (2000).
[Crossref]

Sun, D. L.

T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
[Crossref]

Tang, B.

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-Window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

Tang, B.-H.

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

B.-H. Tang and Z.-L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
[Crossref]

B.-H. Tang, Z.-L. Li, and R. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

Tremblay, A.

H. Guan, A. Tremblay, G. A. Isaac, K. B. Strawbridge, and C. M. Banic, “Numerical simulations of stratus clouds and their sensitivity to radiation-A RACE case study,” J. Appl. Meteorol. 39(11), 1881–1893 (2000).
[Crossref]

Valor, E.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Venturini, V.

G. Bisht, V. Venturini, S. Islam, and L. Jiang, “Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectro-radiometer) data for clear sky days,” Remote Sens. Environ. 97(1), 52–67 (2005).
[Crossref]

Vogel, R. L.

R. L. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite‐derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116(D8), 353–366 (2011).
[Crossref]

Wang, H.

T. Hu, Q. Liu, Y. Du, H. Li, H. Wang, and B. Cao, “Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe basin,” Remote Sens. 7(5), 6489–6509 (2015).
[Crossref]

Wang, T.

G. Yan, T. Wang, Z. Jiao, X. Mu, J. Zhao, and L. Chen, “Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain,” Remote Sens. Environ. 172, 15–27 (2016).
[Crossref]

Z. Jiao, G. Yan, J. Zhao, T. Wang, and L. Chen, “Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan plateau,” Remote Sens. Environ. 162, 221–237 (2015).
[Crossref]

Wang, W.

W. Wang, S. Liang, and J. A. Augustine, “Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data,” IEEE T. Geosci. Remote. 47(5), 1559–1570 (2009).
[Crossref]

Weng, F.

R. L. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite‐derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116(D8), 353–366 (2011).
[Crossref]

Wu, H.

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

H. Wu, X. Zhang, S. Liang, H. Yang, and G. Zhou, “Estimation of clear sky land surface longwave radiation from MODIS data products by merging multiple models,” J. Geophys. Res. 117(D22), 103–112 (2012).
[Crossref]

Xia, J.

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-Window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

Yan, G.

G. Yan, T. Wang, Z. Jiao, X. Mu, J. Zhao, and L. Chen, “Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain,” Remote Sens. Environ. 172, 15–27 (2016).
[Crossref]

Z. Jiao, G. Yan, J. Zhao, T. Wang, and L. Chen, “Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan plateau,” Remote Sens. Environ. 162, 221–237 (2015).
[Crossref]

Yang, H.

H. Wu, X. Zhang, S. Liang, H. Yang, and G. Zhou, “Estimation of clear sky land surface longwave radiation from MODIS data products by merging multiple models,” J. Geophys. Res. 117(D22), 103–112 (2012).
[Crossref]

Zhang, R.

B.-H. Tang, Z.-L. Li, and R. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

Zhang, X.

H. Wu, X. Zhang, S. Liang, H. Yang, and G. Zhou, “Estimation of clear sky land surface longwave radiation from MODIS data products by merging multiple models,” J. Geophys. Res. 117(D22), 103–112 (2012).
[Crossref]

Zhao, J.

G. Yan, T. Wang, Z. Jiao, X. Mu, J. Zhao, and L. Chen, “Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain,” Remote Sens. Environ. 172, 15–27 (2016).
[Crossref]

Z. Jiao, G. Yan, J. Zhao, T. Wang, and L. Chen, “Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan plateau,” Remote Sens. Environ. 162, 221–237 (2015).
[Crossref]

Zhou, G.

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

H. Wu, X. Zhang, S. Liang, H. Yang, and G. Zhou, “Estimation of clear sky land surface longwave radiation from MODIS data products by merging multiple models,” J. Geophys. Res. 117(D22), 103–112 (2012).
[Crossref]

Atmos. Res. (1)

S. Niemelä, P. Räisänen, and H. Savijärvi, “Comparison of surface radiative flux parameterizations: Part I: Longwave radiation,” Atmos. Res. 58(1), 1–18 (2001).
[Crossref]

Chin. J. Oceanology Limnol. (1)

X. F. Li, “Application of nonlinear multi-channel algorithms for estimating sea surface temperature with NOAA-14 AVHRR data,” Chin. J. Oceanology Limnol. 18(3), 199–207 (2000).
[Crossref]

IEEE T. Geo-sci. Remote. (2)

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1,” IEEE T. Geo-sci. Remote. 36(4), 1088–1100 (1998).
[Crossref]

T. Hu, Y. Du, B. Cao, H. Li, Z. J. Bian, D. L. Sun, and Q. H. Liu, “Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality,” IEEE T. Geo-sci. Remote. 54(11), 1–15 (2016).
[Crossref]

IEEE T. Geosci. Remote. (1)

W. Wang, S. Liang, and J. A. Augustine, “Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data,” IEEE T. Geosci. Remote. 47(5), 1559–1570 (2009).
[Crossref]

Int. J. Remote Sens. (1)

A. Nie, Q. Liu, and J. Cheng, “Estimating clear-sky land surface longwave upwelling radiation from MODIS data using a hybrid method,” Int. J. Remote Sens. 37(8), 1747–1761 (2016).
[Crossref]

J. Appl. Meteorol. (1)

H. Guan, A. Tremblay, G. A. Isaac, K. B. Strawbridge, and C. M. Banic, “Numerical simulations of stratus clouds and their sensitivity to radiation-A RACE case study,” J. Appl. Meteorol. 39(11), 1881–1893 (2000).
[Crossref]

J. Geophys. Res. (2)

R. L. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite‐derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116(D8), 353–366 (2011).
[Crossref]

H. Wu, X. Zhang, S. Liang, H. Yang, and G. Zhou, “Estimation of clear sky land surface longwave radiation from MODIS data products by merging multiple models,” J. Geophys. Res. 117(D22), 103–112 (2012).
[Crossref]

Mon. Weather Rev. (1)

C. Soci, C. Fischer, and A. Horányi, “Sensitivity of high-resolution forecasts using the adjoint technique at the 10-km scale,” Mon. Weather Rev. 134(3), 772–790 (2006).
[Crossref]

Proc. SPIE (1)

A. Berk, G. P. Anderson, P. K. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Alder-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. Cooley, C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Remote Sens. (2)

T. Hu, Q. Liu, Y. Du, H. Li, H. Wang, and B. Cao, “Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe basin,” Remote Sens. 7(5), 6489–6509 (2015).
[Crossref]

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Remote Sens. Environ. (6)

G. Bisht, V. Venturini, S. Islam, and L. Jiang, “Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectro-radiometer) data for clear sky days,” Remote Sens. Environ. 97(1), 52–67 (2005).
[Crossref]

B.-H. Tang and Z.-L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
[Crossref]

G. Yan, T. Wang, Z. Jiao, X. Mu, J. Zhao, and L. Chen, “Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain,” Remote Sens. Environ. 172, 15–27 (2016).
[Crossref]

Z. Jiao, G. Yan, J. Zhao, T. Wang, and L. Chen, “Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan plateau,” Remote Sens. Environ. 162, 221–237 (2015).
[Crossref]

B.-H. Tang, Z.-L. Li, and R. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Sensors (Basel) (1)

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-Window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) Data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

Other (1)

S. Liang, “Quantitative Remote Sensing of Land Surfaces (Wiley-Interscience, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The representative emissivities used in the simulations.
Fig. 2
Fig. 2 The simulation processes of SULR and TOA brightness temperature.
Fig. 3
Fig. 3 Comparisons of the energy distribution of SULR, bottom atmosphere irradiance, land surface irradiance also the downwelling longwave irradiance (LST = 300K, soil type, US standard atmosphere).
Fig. 4
Fig. 4 RMSEs between the actual and estimated SULR as function of the secant VZA for different sub-ranges of WVC and Teq.
Fig. 5
Fig. 5 Histogram of the difference between the actual and estimated SULR for the overlap water vapor content WVC ∈ [1.0, 1.5] using the coefficients of different sub-ranges.
Fig. 6
Fig. 6 Histogram of the difference between the actual and estimated SULR for the overlap water vapor content WVC ∈ [3.0, 3.5] using the coefficients of different sub-ranges.
Fig. 7
Fig. 7 Comparison between the SULR estimated using the proposed (solid circles) and LST-emissivity methods (hollow circles) and those measured in situ at SURFRAD test sites for clear sky conditions at the moment of MODIS Terra overpass. The scattering diagrams of the WVC (plus sign) as function of the actual SULR are also shown.
Fig. 8
Fig. 8 Comparison between the SULR estimated using the proposed (solid circles) and LST-emissivity methods (hollow circles) and those measured in situ at SURFRAD test sites for clear sky conditions at the moment of MODIS Aqua overpass. The scattering diagrams of the WVC (plus sign) as function of the actual SULR are also shown.

Tables (2)

Tables Icon

Table 1 Geographic information of the six study sites

Tables Icon

Table 2 Summary of validation results about the two methods using MODIS data (unit: W/m2)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S U L R = ε λ 1 λ 2 0 2 π 0 π 2 B λ ( T s ( θ v , ϕ ) ) sin θ v cos θ v d θ v d ϕ d λ + ( 1 ε ) D S L R
B i ( T i ) = τ i ( ε i B i ( T s ) d λ + ( 1 ε i ) R a t m ) + R a t m
B i ( T e q ) = ε i B i ( T s ) d λ + ( 1 ε i ) R a t m
B i ( T i ) = τ i B i ( T e q ) + R a t m
T e q = c 1 + c 2 T 31 + c 3 ( T 31 T 32 ) + c 4 ( sec θ v 1 ) ( T 31 T 32 ) 2
S U L R = k × M ( T e q ) + b = k × σ T e q 4 + b
ε b r o a d = 0.273 + 1.778 ε 31 1.807 ε 31 ε 32 1.037 ε 32 + 1.774 ε 32 2
S U L R = ε b r o a d σ T s 4 + ( 1 ε b r o a d ) D S L R

Metrics