Abstract

We have experimentally demonstrated passively Q-switched (PQS) stimulated Raman scatting (SRS) emissions in an a-cut YVO4 Raman crystal in a coupled cavity, using a Yb:YAG/YAG/Cr4+:YAG/YAG composite crystal to generate the PQS fundamental laser, for the first time, to our best knowledge. At the incident pump power of 6.30 W, the Stokes average output power of 0.42 W was achieved. Due to the cascaded Raman effect, four first-Stokes lines operating at 1092.6 nm, 1125.4 nm, 1135.1 nm and 1157.0 nm and three second-Stokes lines operating at 1210.6 nm, 1263.2 nm and 1290.1 nm were generated simultaneously. It is noted that the spectral broadening of the fundamental field was observed. With the inclusion of an etalon in the fundamental cavity to suppress the spectral broadening, the average output power of the Stokes lines increased to 0.49 W and the maximum pulse energy was enhanced up to 84.30 μJ, corresponding to the diode-to-Stokes conversion efficiency of 7.78%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-watt passively Q-switched self-Raman laser based on a c-cut Nd:YVO4 composite crystal

Mengting Chen, Shibo Dai, Siqi Zhu, Hao Yin, Zhen Li, and Zhenqiang Chen
J. Opt. Soc. Am. B 36(2) 524-532 (2019)

Investigation on LD end-pumped passively Q-switched c-cut Nd: YVO4 self-Raman laser

Shuanghong Ding, Meiqin Wang, Shiwu Wang, and Wenhui Zhang
Opt. Express 21(11) 13052-13061 (2013)

Efficient high-peak-power diode-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser

Kuan-Wei Su, Ya-Ting Chang, and Yung-Fu Chen
Appl. Opt. 47(35) 6675-6679 (2008)

References

  • View by:
  • |
  • |
  • |

  1. W. Z. Zhuang, Y. F. Chen, K. W. Su, K. F. Huang, and Y. F. Chen, “Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling,” Opt. Express 20(20), 22602–22608 (2012).
    [Crossref] [PubMed]
  2. J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
    [Crossref]
  3. C. Y. Cho, H. P. Cheng, Y. C. Chang, C. Y. Tang, and Y. F. Chen, “An energy adjustable linearly polarized passively Q-switched bulk laser with a wedged diffusion-bonded Nd:YAG/Cr4+:YAG crystal,” Opt. Express 23(6), 8162–8169 (2015).
    [Crossref] [PubMed]
  4. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
    [Crossref] [PubMed]
  5. J. Dong, Y. Y. Ren, G. Y. Wang, and Y. Cheng, “Efficient laser performance of Yb:Y3Al5O12/Cr4+:Y3Al5O12 composite crystals,” Laser Phys. Lett. 10(10), 105817 (2013).
    [Crossref]
  6. Y. Cheng, J. Dong, and Y. Ren, “Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal,” Opt. Express 20(22), 24803–24812 (2012).
    [Crossref] [PubMed]
  7. W. Jiang, Y. M. Liu, W. D. Chen, S. Q. Zhu, Z. J. Chen, G. Zhang, Y. H. Chen, and Z. Q. Chen, “Composite Yb:YAG/Cr4+:YAG/YAG crystal passively Q-switched lasers at 1030 nm,” Appl. Opt. 54(7), 1834–1838 (2015).
    [Crossref]
  8. P. Ye, S. Zhu, Z. Li, H. Yin, P. Zhang, S. Fu, and Z. Chen, “Passively Q-switched dual-wavelength green laser with an Yb:YAG/ Cr4+:YAG/YAG composite crystal,” Opt. Express 25(5), 5179–5185 (2017).
    [Crossref] [PubMed]
  9. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  10. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
    [Crossref]
  11. Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 78(6), 685–687 (2004).
    [Crossref]
  12. T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97(4), 799–804 (2009).
    [Crossref]
  13. H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
    [Crossref]
  14. W. Jiang, S. Zhu, X. Chen, Y. Liu, Z. Chen, H. Yin, Z. Li, S. Wang, and Y. Chen, “Compact passively Q-switched Raman laser at 1176 nm and yellow laser at 588 nm using Nd3+:YAG/Cr4+:YAG composite crystal,” Appl. Opt. 53(7), 1328–1332 (2014).
    [Crossref] [PubMed]
  15. J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, “Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion,” Opt. Lett. 30(18), 2427–2429 (2005).
    [Crossref] [PubMed]
  16. H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
    [Crossref]
  17. G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
    [Crossref] [PubMed]
  18. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
    [Crossref] [PubMed]

2017 (1)

2015 (3)

2014 (3)

2013 (1)

J. Dong, Y. Y. Ren, G. Y. Wang, and Y. Cheng, “Efficient laser performance of Yb:Y3Al5O12/Cr4+:Y3Al5O12 composite crystals,” Laser Phys. Lett. 10(10), 105817 (2013).
[Crossref]

2012 (3)

2011 (1)

2009 (1)

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97(4), 799–804 (2009).
[Crossref]

2008 (2)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

2007 (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

2005 (1)

2004 (1)

Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 78(6), 685–687 (2004).
[Crossref]

Aguiló, M.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Bhandari, R.

Bonner, G. M.

Chang, Y. C.

Chang, Y. T.

Chen, W. D.

Chen, X.

W. Jiang, S. Zhu, X. Chen, Y. Liu, Z. Chen, H. Yin, Z. Li, S. Wang, and Y. Chen, “Compact passively Q-switched Raman laser at 1176 nm and yellow laser at 588 nm using Nd3+:YAG/Cr4+:YAG composite crystal,” Appl. Opt. 53(7), 1328–1332 (2014).
[Crossref] [PubMed]

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Chen, Y.

Chen, Y. F.

Chen, Y. H.

Chen, Z.

Chen, Z. J.

Chen, Z. Q.

Cheng, H. P.

Cheng, Y.

J. Dong, Y. Y. Ren, G. Y. Wang, and Y. Cheng, “Efficient laser performance of Yb:Y3Al5O12/Cr4+:Y3Al5O12 composite crystals,” Laser Phys. Lett. 10(10), 105817 (2013).
[Crossref]

Y. Cheng, J. Dong, and Y. Ren, “Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal,” Opt. Express 20(22), 24803–24812 (2012).
[Crossref] [PubMed]

Cho, C. Y.

Chu, H.

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Cong, Z.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[Crossref]

Díaz, F.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Dong, J.

J. Dong, Y. Y. Ren, G. Y. Wang, and Y. Cheng, “Efficient laser performance of Yb:Y3Al5O12/Cr4+:Y3Al5O12 composite crystals,” Laser Phys. Lett. 10(10), 105817 (2013).
[Crossref]

Y. Cheng, J. Dong, and Y. Ren, “Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal,” Opt. Express 20(22), 24803–24812 (2012).
[Crossref] [PubMed]

Fan, S.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Fu, S.

Griebner, U.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, “Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion,” Opt. Lett. 30(18), 2427–2429 (2005).
[Crossref] [PubMed]

Huang, K. F.

Huang, Y. P.

Jambunathan, V.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Jiang, W.

Kemp, A. J.

Lee, A.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97(4), 799–804 (2009).
[Crossref]

Li, D.

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Li, G.

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Li, L.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Li, T.

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Li, Y.

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Li, Z.

Lin, J.

Liu, J.

Liu, Y.

Liu, Y. M.

Liu, Z.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Loiko, P.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Lucianetti, A.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Mateos, X.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Mildren, R. P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[Crossref]

Mocek, T.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Omatsu, T.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97(4), 799–804 (2009).
[Crossref]

Pask, H. M.

G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
[Crossref] [PubMed]

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97(4), 799–804 (2009).
[Crossref]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Petrov, V.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, “Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion,” Opt. Lett. 30(18), 2427–2429 (2005).
[Crossref] [PubMed]

Piper, J.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97(4), 799–804 (2009).
[Crossref]

Piper, J. A.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Qiao, W.

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Ren, Y.

Ren, Y. Y.

J. Dong, Y. Y. Ren, G. Y. Wang, and Y. Cheng, “Efficient laser performance of Yb:Y3Al5O12/Cr4+:Y3Al5O12 composite crystals,” Laser Phys. Lett. 10(10), 105817 (2013).
[Crossref]

Serres, J. M.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Spence, D. J.

G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
[Crossref] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[Crossref]

Su, K. W.

Taira, T.

Tang, C. Y.

Tao, X.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Wang, C.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Wang, G. Y.

J. Dong, Y. Y. Ren, G. Y. Wang, and Y. Cheng, “Efficient laser performance of Yb:Y3Al5O12/Cr4+:Y3Al5O12 composite crystals,” Laser Phys. Lett. 10(10), 105817 (2013).
[Crossref]

Wang, J.

Wang, Q.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Wang, S.

Wang, W.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Xu, H.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Yang, K.

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Ye, P.

Yin, H.

Yumashev, K.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Zhang, G.

Zhang, H.

Zhang, J.

Zhang, P.

Zhang, X.

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

Zhao, J.

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Zhao, S.

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Zhu, S.

Zhu, S. Q.

Zhuang, W. Z.

Appl. Opt. (2)

Appl. Phys. B (3)

Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 78(6), 685–687 (2004).
[Crossref]

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97(4), 799–804 (2009).
[Crossref]

H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, and X. Tao, “Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power,” Appl. Phys. B 107(2), 343–348 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

IEEE Photonics J. (1)

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Chu, K. Yang, T. Li, S. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and Anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Laser Phys. Lett. (1)

J. Dong, Y. Y. Ren, G. Y. Wang, and Y. Cheng, “Efficient laser performance of Yb:Y3Al5O12/Cr4+:Y3Al5O12 composite crystals,” Laser Phys. Lett. 10(10), 105817 (2013).
[Crossref]

Opt. Express (7)

C. Y. Cho, H. P. Cheng, Y. C. Chang, C. Y. Tang, and Y. F. Chen, “An energy adjustable linearly polarized passively Q-switched bulk laser with a wedged diffusion-bonded Nd:YAG/Cr4+:YAG crystal,” Opt. Express 23(6), 8162–8169 (2015).
[Crossref] [PubMed]

P. Ye, S. Zhu, Z. Li, H. Yin, P. Zhang, S. Fu, and Z. Chen, “Passively Q-switched dual-wavelength green laser with an Yb:YAG/ Cr4+:YAG/YAG composite crystal,” Opt. Express 25(5), 5179–5185 (2017).
[Crossref] [PubMed]

G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
[Crossref] [PubMed]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
[Crossref] [PubMed]

W. Z. Zhuang, Y. F. Chen, K. W. Su, K. F. Huang, and Y. F. Chen, “Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling,” Opt. Express 20(20), 22602–22608 (2012).
[Crossref] [PubMed]

Y. Cheng, J. Dong, and Y. Ren, “Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal,” Opt. Express 20(22), 24803–24812 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Prog. Quantum Electron. (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The experimental setup for the free running coupled-cavity PQS Raman laser.
Fig. 2
Fig. 2 The transmission spectra for the intracavity mirror (IM) and the output coupler (OC).
Fig. 3
Fig. 3 (a) The average output power of the fundamental laser with respect to the incident pump power; (b) the pulse width and the PRF with respect to the incident pump power; (c) the emission spectrum of the fundamental laser at the incident pump power of 9.34 W.
Fig. 4
Fig. 4 (a) The average output power of Stokes laser and (b) the pulse width and the PRF for a free running PQS Raman laser with respect to the incident pump power.
Fig. 5
Fig. 5 (a) The output spectra of fundamental laser for the case 1; (b) the cascaded Raman laser spectra for the case 1 at the incident pump power of 6.30 W; (a’) the output spectra of fundamental laser for the case2; (b’) the cascaded Raman laser spectra for the case 2 at the incident pump power of 6.30 W;
Fig. 6
Fig. 6 (a)-(b) The spectra of fundamental field for the case 1 at the incident pump power of 3.53 W and 6.30 W; (c) the spectra of fundamental field for the case 3 (inserting an etalon in the fundamental cavity) at the incident pump power of 6.30 W; selected primary first-Stokes spectra at the range of 1132-1162 nm at the incident pump power of 6.3 W for (d) case1: coupled cavity; (e) case3: inserting an etalon.
Fig. 7
Fig. 7 The experimental setup of the coupled-cavity Raman laser when inserting an etalon in the fundamental cavity.
Fig. 8
Fig. 8 (a) The average output power of Stokes lines for the case 1 and the case 3 as a function of the incident pump power; (b) the spectrum of output laser for the case3 at an incident pump power of 6.30 W.
Fig. 9
Fig. 9 (a) The pulse width and the PRF; (b) the diode-to-Stokes conversion efficiency and the pulse energy for the case 1 and the case 3 with respect to the incident pump power

Tables (1)

Tables Icon

Table 1 The list of wavelengths of fundamental laser, first-Stokes laser and second-Stokes laser, and corresponding Raman shift.

Metrics