Abstract

Squeezing magnetic dipole (MD) moment into a deep subwavelegnth apex of a tapered tip has not been achieved so far owing to a specific mode volume of a MD resonance which is dependent on an operating wavelength and back reflection of nanofocused waves. We propose a novel strategy for efficient delivery and nanofocusing of optical MD at an apex of a closed resonant plasmonic tip. Due to the ultracompact area (~λ2/900) of the nanocavity and resonances assisted by partial mirrors in a plasmonic waveguide, the enhancement factor of magnetic energy density is improved over 5 times. We expect that our scheme can help to investigate strong magnetic phenomena, including enhanced magnetic transition, artificial optical magnetism, multipole nonlinear optics, biomolecular sensing, magnetic near-field imaging, and spectroscopy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic metasurface cavity for simultaneous enhancement of optical electric and magnetic fields in deep subwavelength volume

Jongwoo Hong, Sun-Je Kim, Inki Kim, Hansik Yun, Sang-Eun Mun, Junsuk Rho, and Byoungho Lee
Opt. Express 26(10) 13340-13348 (2018)

Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips

Wei Bao, Matteo Staffaroni, Jeffrey Bokor, Miquel B. Salmeron, Eli Yablonovitch, Stefano Cabrini, Alexander Weber-Bargioni, and P. James Schuck
Opt. Express 21(7) 8166-8176 (2013)

Strong Purcell effect for magnetic dipole emission with spoof plasmonic spiral structure

Hong-Wei Wu, Jia-Qi Quan, Yun-Qiao Yin, and Zong-Qiang Sheng
J. Opt. Soc. Am. B 37(1) 98-103 (2020)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  3. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
    [Crossref] [PubMed]
  4. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  5. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  7. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  8. T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface–plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
    [Crossref]
  9. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]
  10. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
    [Crossref]
  11. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
    [Crossref]
  12. J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9(9), 601–607 (2015).
    [Crossref]
  13. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  14. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  15. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett. 36(17), 3371–3373 (2011).
    [Crossref] [PubMed]
  16. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritions in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
    [Crossref]
  17. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
    [Crossref] [PubMed]
  18. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref] [PubMed]
  19. H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
    [Crossref]
  20. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
    [Crossref] [PubMed]
  21. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
    [Crossref]
  22. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
    [Crossref] [PubMed]
  23. V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
    [Crossref] [PubMed]
  24. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
    [Crossref] [PubMed]
  25. M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
    [Crossref] [PubMed]
  26. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
    [Crossref] [PubMed]
  27. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
    [Crossref]
  28. A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78(8), 085112 (2008).
    [Crossref]
  29. C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78(16), 165114 (2008).
    [Crossref]
  30. R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
    [Crossref] [PubMed]
  31. T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Kall, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B 25(4), 659–667 (2008).
    [Crossref]
  32. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
    [Crossref]
  33. J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
    [Crossref]
  34. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
    [Crossref] [PubMed]
  35. D. A. Smirnova, A. B. Khankiaev, L. A. Smirnov, and Y. S. Kivshar, “Multipolar third-harmonic generation driven by optically induced magnetic resonances,” ACS Photonics 3(8), 1468–1476 (2016).
    [Crossref]
  36. D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
    [Crossref]
  37. D. Lee and D.-S. Kim, “Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector,” Sci. Rep. 6(1), 18935 (2016).
    [Crossref] [PubMed]
  38. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  39. E. Laux, C. Genet, T. Skauli, and T. W. Ebbessen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
    [Crossref]
  40. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
    [Crossref]
  41. M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
    [Crossref] [PubMed]
  42. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
    [Crossref] [PubMed]
  43. H. Park, S.-Y. Lee, J. Kim, B. Lee, and H. Kim, “Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide,” Opt. Express 23(19), 24464–24474 (2015).
    [Crossref] [PubMed]
  44. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
    [Crossref] [PubMed]
  45. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
    [Crossref] [PubMed]
  46. C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010).
    [Crossref] [PubMed]
  47. H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi, B Basic Res. 246(7), 1397–1406 (2009).
    [Crossref]
  48. D. M. Pozar, Microwave Engineering (John Wiley & Sons, 2009).
  49. J. Kim, S.-Y. Lee, and B. Lee, “Near-complete radiation of plasmonic mode from nano-slit to free space,” J. Lightwave Technol. 34(9), 2251–2255 (2016).
    [Crossref]
  50. E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).
  51. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
    [Crossref]
  52. M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39(2), 215–217 (2003).
    [Crossref]
  53. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  54. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [Crossref]
  55. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
    [Crossref]
  56. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  57. Z. Li, J. L. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal-insulator-metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
    [Crossref]

2016 (4)

D. A. Smirnova, A. B. Khankiaev, L. A. Smirnov, and Y. S. Kivshar, “Multipolar third-harmonic generation driven by optically induced magnetic resonances,” ACS Photonics 3(8), 1468–1476 (2016).
[Crossref]

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
[Crossref]

D. Lee and D.-S. Kim, “Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector,” Sci. Rep. 6(1), 18935 (2016).
[Crossref] [PubMed]

J. Kim, S.-Y. Lee, and B. Lee, “Near-complete radiation of plasmonic mode from nano-slit to free space,” J. Lightwave Technol. 34(9), 2251–2255 (2016).
[Crossref]

2015 (5)

H. Park, S.-Y. Lee, J. Kim, B. Lee, and H. Kim, “Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide,” Opt. Express 23(19), 24464–24474 (2015).
[Crossref] [PubMed]

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9(9), 601–607 (2015).
[Crossref]

2014 (1)

Z. Li, J. L. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal-insulator-metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

2013 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

2012 (5)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

2011 (2)

2010 (4)

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
[Crossref] [PubMed]

C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010).
[Crossref] [PubMed]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
[Crossref] [PubMed]

2009 (4)

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[Crossref] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi, B Basic Res. 246(7), 1397–1406 (2009).
[Crossref]

J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
[Crossref]

2008 (7)

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Kall, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B 25(4), 659–667 (2008).
[Crossref]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78(8), 085112 (2008).
[Crossref]

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78(16), 165114 (2008).
[Crossref]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbessen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

2007 (4)

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

2006 (3)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

2005 (1)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

2004 (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

2003 (4)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39(2), 215–217 (2003).
[Crossref]

2002 (2)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[Crossref]

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface–plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

2000 (1)

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritions in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Abrishamian, M. S.

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78(8), 085112 (2008).
[Crossref]

Ananias, D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Andryieuski, A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritions in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartal, G.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[Crossref] [PubMed]

Beermann, J.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Berweger, S.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Bokor, J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Bozhevolnyi, S. I.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Bristow, A. D.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9(9), 601–607 (2015).
[Crossref]

Brongersma, M. L.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Burger, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Burresi, M.

M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
[Crossref] [PubMed]

Cabrini, S.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Canfield, B. K.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

Cao, J. X.

Carlos, L. D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Chen, H.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Cheng, Q. Q.

Chipouline, A.

J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
[Crossref]

Choi, S. B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Choo, H.

Z. Li, J. L. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal-insulator-metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Cushing, S. K.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9(9), 601–607 (2015).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Dmitriev, A.

Dodson, C. M.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Dolling, G.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebbessen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbessen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78(8), 085112 (2008).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Eriksen, R. L.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Gantzounis, G.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78(16), 165114 (2008).
[Crossref]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbessen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

Genov, D. A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[Crossref] [PubMed]

Gramotnev, D. K.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

Granpayeh, N.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Han, Z.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Holmgaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Hu, X. P.

Ishikawa, A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Johansson, M. L.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface–plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Jun, Y. C.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Kalinin, V. A.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[Crossref]

Kall, M.

Käll, M.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Kambhampati, D.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface–plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Kampfrath, T.

M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
[Crossref] [PubMed]

Karaveli, S.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

Kasperczyk, M.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

Kekatpure, R. D.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

Khankiaev, A. B.

D. A. Smirnova, A. B. Khankiaev, L. A. Smirnov, and Y. S. Kivshar, “Multipolar third-harmonic generation driven by optically induced magnetic resonances,” ACS Photonics 3(8), 1468–1476 (2016).
[Crossref]

Kihm, H. W.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kihm, J. E.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, D. S.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, D.-S.

D. Lee and D.-S. Kim, “Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector,” Sci. Rep. 6(1), 18935 (2016).
[Crossref] [PubMed]

Kim, H.

H. Park, S.-Y. Lee, J. Kim, B. Lee, and H. Kim, “Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide,” Opt. Express 23(19), 24464–24474 (2015).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, J.

J. Kim, S.-Y. Lee, and B. Lee, “Near-complete radiation of plasmonic mode from nano-slit to free space,” J. Lightwave Technol. 34(9), 2251–2255 (2016).
[Crossref]

H. Park, S.-Y. Lee, J. Kim, B. Lee, and H. Kim, “Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide,” Opt. Express 23(19), 24464–24474 (2015).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, K.-Y.

Kim, M.

Z. Li, J. L. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal-insulator-metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Kim, M. K.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Kivshar, Y. S.

D. A. Smirnova, A. B. Khankiaev, L. A. Smirnov, and Y. S. Kivshar, “Multipolar third-harmonic generation driven by optically induced magnetic resonances,” ACS Photonics 3(8), 1468–1476 (2016).
[Crossref]

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
[Crossref]

Klein, M. W.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Knoll, W.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface–plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Koschny, T.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Kou, J. L.

Z. Li, J. L. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal-insulator-metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Kuipers, L.

M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
[Crossref] [PubMed]

Kuipers, L. K.

Kujala, S.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbessen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

Lavrinenko, A. V.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Lederer, F.

J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
[Crossref]

Lee, B.

Lee, D.

D. Lee and D.-S. Kim, “Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector,” Sci. Rep. 6(1), 18935 (2016).
[Crossref] [PubMed]

Lee, I.-M.

Lee, J. O.

Z. Li, J. L. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal-insulator-metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Lee, K. G.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Lee, S.-Y.

Li, J.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9(9), 601–607 (2015).
[Crossref]

Li, L.

Li, T.

Li, Z.

Z. Li, J. L. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal-insulator-metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Lienau, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Linden, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Liu, H.

Liu, Y. M.

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi, B Basic Res. 246(7), 1397–1406 (2009).
[Crossref]

Lu, F. F.

Malureanu, R.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritions in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

Meng, F.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9(9), 601–607 (2015).
[Crossref]

Menzel, C.

J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
[Crossref]

Ming, T.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Na, H.

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Neacsu, C. C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Nerkararyan, Kh. V.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritions in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

Neumann, T.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface–plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Noda, S.

M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
[Crossref] [PubMed]

Novikov, S. M.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Novotny, L.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Olmon, R. L.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

Pakizeh, T.

Papanikolaou, N.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78(16), 165114 (2008).
[Crossref]

Park, D. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Park, H.

Park, J.

Park, Q. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Pedersen, K.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Person, S.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Pertsch, T.

J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
[Crossref]

Petschulat, J.

J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
[Crossref]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

Polman, A.

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Prangsma, J. C.

M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
[Crossref] [PubMed]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Radko, I. P.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Raschke, M. B.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Ringhofer, K. H.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[Crossref]

Rockstuhl, C.

J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
[Crossref]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Ropers, C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Saraf, L. V.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Schmidt, F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Schuck, P. J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Senty, T. R.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9(9), 601–607 (2015).
[Crossref]

Seok, T. J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Shamonina, E.

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39(2), 215–217 (2003).
[Crossref]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[Crossref]

Shegai, T.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbessen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

Smirnov, L. A.

D. A. Smirnova, A. B. Khankiaev, L. A. Smirnov, and Y. S. Kivshar, “Multipolar third-harmonic generation driven by optically induced magnetic resonances,” ACS Photonics 3(8), 1468–1476 (2016).
[Crossref]

Smirnova, D.

Smirnova, D. A.

D. A. Smirnova, A. B. Khankiaev, L. A. Smirnov, and Y. S. Kivshar, “Multipolar third-harmonic generation driven by optically induced magnetic resonances,” ACS Photonics 3(8), 1468–1476 (2016).
[Crossref]

Solymar, L.

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39(2), 215–217 (2003).
[Crossref]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[Crossref]

Søndergaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Song, B. S.

M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Staffaroni, M.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Stefanou, N.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78(16), 165114 (2008).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Sun, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Svirko, Y.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

Tserkezis, C.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78(16), 165114 (2008).
[Crossref]

Tunnerman, A.

J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
[Crossref]

Turunen, J.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

van Hulst, N. F.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

van Oosten, D.

M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
[Crossref] [PubMed]

Verhagen, E.

Verre, R.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Volkov, V. S.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Wang, J.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Wang, S. M.

Wang, Y.

C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wegener, M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

White, J. S.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wiltshire, M. C. K.

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39(2), 215–217 (2003).
[Crossref]

Woo, D. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Wu, M. C.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Wu, N.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9(9), 601–607 (2015).
[Crossref]

Yablonovitch, E.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Yan, C.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yang, Z.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yang, Z. J.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Young, I. R.

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39(2), 215–217 (2003).
[Crossref]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zenin, V. A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Zhang, S.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[Crossref] [PubMed]

Zhang, X.

C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010).
[Crossref] [PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[Crossref] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi, B Basic Res. 246(7), 1397–1406 (2009).
[Crossref]

Zhao, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Zheng, Y. J.

Zhou, J.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Zhu, C.

Zhu, S. N.

Zhu, Y. Y.

Zia, R.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

ACS Photonics (2)

D. A. Smirnova, A. B. Khankiaev, L. A. Smirnov, and Y. S. Kivshar, “Multipolar third-harmonic generation driven by optically induced magnetic resonances,” ACS Photonics 3(8), 1468–1476 (2016).
[Crossref]

Z. Li, J. L. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal-insulator-metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Adv. Funct. Mater. (1)

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface–plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Electron. Lett. (1)

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39(2), 215–217 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

J. Appl. Phys. (2)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[Crossref]

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritions in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (5)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nat. Photonics (7)

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbessen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[Crossref]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9(9), 601–607 (2015).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (1)

J. Petschulat, A. Chipouline, A. Tunnerman, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80(6), 063828 (2009).
[Crossref]

Phys. Rev. B (5)

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78(8), 085112 (2008).
[Crossref]

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78(16), 165114 (2008).
[Crossref]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Phys. Rev. Lett. (8)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[Crossref] [PubMed]

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105(12), 123901 (2010).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi, B Basic Res. 246(7), 1397–1406 (2009).
[Crossref]

Sci. Rep. (1)

D. Lee and D.-S. Kim, “Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector,” Sci. Rep. 6(1), 18935 (2016).
[Crossref] [PubMed]

Other (5)

D. M. Pozar, Microwave Engineering (John Wiley & Sons, 2009).

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Charge distributions and plasmonic eigenmode profiles (Hz fields) of (a) the fundamental symmetric MIM mode and (b) anti-symmetric MIM mode, respectively. Blue and green bold lines refer to the virtual rectangular surfaces for calculation of an MD moment in them. The insulator region is regarded as vacuum.
Fig. 2
Fig. 2 (a) Schematic illustration of a tapered MIM tip with a closed apex. The waveguide width (wwg), width (wc) and length (tc) of the nanocavity are fixed to 300 nm, 30 nm, and 30 nm, respectively. The fundamental symmetric MIM mode is incident from the left side through the waveguide. (b) Spatial profile of magnetic field intensity inside a closed MIM tip. Working wavelength is 900 nm and tapering angle is 20 degrees. Intensity is normalized by the intensity value of input symmetric MIM mode calculated at the middle of the waveguide along y-direction.
Fig. 3
Fig. 3 (a) Schematic illustration of a closed MIM tip with a nanostrip partial mirror for critically squeezed MD inside a nanocavity. Additional diagrams describe individual scattering phenomena when the fundamental symmetric mode is incident to (b) the isolated nanostrip region and (c) the isolated tapered waveguide-nanocavity region. U0 denotes amplitude of the input symmetric waveguide mode. Parameters, wwg, tc, and wc, are set to be 300 nm, 30 nm, and 30 nm, respectively.
Fig. 4
Fig. 4 Numerical calculation results of scatterings by MIM tips and nanostrips. Reflection coefficient spectra of isolated MIM tips in terms of (a) phase and (b) amplitude, respectively (The four legends in the plot refer to the corresponding tapering angles.). (c), (d) Calculated spectra of r/(r2-t2). (c) and (d) refer to phase and amplitude plots of r/(r2-t2), respectively, for various discrete combinations of tr and wr (The two numbers denoting the four legends in (c) and (d) mean corresponding tr and wr values, respectively.).
Fig. 5
Fig. 5 Designed resonant spectra of (a) reflectance, (b) enhancement factor of maximum magnetic field intensity inside the nanocavity, and (c) enhancement factor of magnetic dipole moment inside the nanocavity.
Fig. 6
Fig. 6 Spatial distributions of (a) magnetic and (b) electric field intensity at the resonance (λres = 900 nm, wr = 240 nm, tr = 20 nm, and θ = 20 deg.). The normalized green arrows in the inset figure of (b) represent circulating local electric current vectors around the nanocavity.
Fig. 7
Fig. 7 Spectra of r11 + (t212rc)/(1-r22rc) in terms of (a) phase and (b) amplitude, respectively. (c) Amplitude spectra of rtc (the magnified plot of Fig. 4 (b)). The four legends in the plot refer to the corresponding tapering angles.
Fig. 8
Fig. 8 (a) Schematic illustration of nano-iris partial mirror. Spectra of (b) reflectance and (b) enhancement factor of maximum magnetic field intensity inside the nanocavity. The legends inside the parts (b) and (c) denote tapering angle. Optimized nano-iris conditions of (ti, wi) for resonant spectra corresponding to tapering angles of 17, 18, 19, and 20 degrees are (7.5 nm, 120 nm), (20 nm, 80 nm), (20 nm, 80 nm), and (20 nm, 80 nm), respectively. wwg, wc, and tc are 300 nm, 30nm, and 30 nm, respectively.
Fig. 9
Fig. 9 Spatial distributions of (a) magnetic field and (b) electric field at the resonant wavelength of 900 nm with the tapering angle of 20 degrees. wwg, wc, and tc are 300 nm, 30nm, and 30 nm, respectively.

Tables (1)

Tables Icon

Table 1 Selected critical coupling conditions with geometric parameters.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| m 0 |=| 1 2 ( r × J )d S |=| j(1 1 ε m ){ 0 λ spp /2 a βx H z dydx + 0 λ spp /2 a j γ m y H z dydx } | = H 0 cosh( γ d a) β γ m (4+2a γ m ) 2 + π 2 .
S 1 =( r t t r ),
S t =( r 11 t 12 t 21 r 22 ), S c =( r c ), S 2 =( r tc ).( r tc = r 11 + t 21 2 r c 1 r 22 r c , t 12 = t 21 ).
U tot,r = U 0 ( r+ t 2 r tc 1r r tc )=0.
det( S 1 )= r 2 t 2 = r r tc , r r 2 t 2 = r tc .

Metrics