Abstract

A Brillouin optical time domain analysis (BOTDA) system utilizing tailored compensation for the propagation loss of the pump pulse is demonstrated for long-range and high-resolution distributed sensing. A continuous pump wave for distributed Brillouin amplification (DBA pump) of the pump pulse co-propagates with the probe wave, where gradual variation of the spectral width is additionally introduced to the DBA pump to obtain a uniform Brillouin gain along the position. In the experimental confirmation, a distributed strain measurement along a 51.2 km fiber under test is presented with a spatial resolution of 20 cm, in which the measurement error (σ) of less than 1.45 MHz and the near-constant Brillouin gain of the probe wave are maintained throughout the fiber.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses

Javier Urricelqui, Mikel Sagues, and Alayn Loayssa
Opt. Express 23(23) 30448-30458 (2015)

BOTDA sensors enhanced using high-efficiency second-order distributed Brillouin amplification

Xin-Hong Jia, Han-Qing Chang, Lei Ao, Xiao-Ling Ji, Cong Xu, and Wei-Li Zhang
Opt. Express 24(13) 14079-14085 (2016)

Brillouin optical time-domain analysis sensor with pump pulse amplification

Juan José Mompó, Javier Urricelqui, and Alayn Loayssa
Opt. Express 24(12) 12672-12681 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
    [Crossref] [PubMed]
  2. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18(18), 1561–1563 (1993).
    [Crossref] [PubMed]
  3. M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [Crossref] [PubMed]
  4. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [Crossref]
  5. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).
  6. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [Crossref] [PubMed]
  7. M. N. Alahbabi, Y. T. Cho, T. P. Newson, P. C. Wait, and A. H. Hartog, “Influence of modulation instability on distributed optical fibre sensors based on spontaneous Brillouin scattering,” J. Opt. Soc. Am. B 21(6), 1156–1160 (2004).
    [Crossref]
  8. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  9. M. A. Soto, G. Bolognini, and F. D. Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
    [Crossref] [PubMed]
  10. X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
    [Crossref] [PubMed]
  11. M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF With 1-m Spatial Resolution Assisted be Optimized Bidirectional Raman Amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
    [Crossref]
  12. H. Iribas, A. Loayssa, F. Sauser, M. Llera, and S. Le Floch, “Cyclic coding for Brillouin optical time-domain analyzers using probe dithering,” Opt. Express 25(8), 8787–8800 (2017).
    [Crossref] [PubMed]
  13. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time–domain analysis combining frequency–division multiplexing and in–line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
    [Crossref]
  14. J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
    [Crossref] [PubMed]
  15. M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006).
    [Crossref] [PubMed]
  16. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  17. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  18. K. Y. Song and S. Yang, “Simplified Brillouin optical time-domain sensor based on direct modulation of a laser diode,” Opt. Express 18(23), 24012–24018 (2010).
    [Crossref] [PubMed]
  19. J. G. Hong and K. Y. Song, “Simplified BOTDA system based on direct modulation of a laser diode with an extended measurement range,” J. Lightwave Technol. 33(10), 1979–1984 (2015).
    [Crossref]

2017 (1)

2015 (2)

2013 (2)

2012 (3)

2011 (2)

2010 (1)

2008 (2)

2006 (1)

2005 (1)

2004 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

1996 (1)

1993 (1)

Alahbabi, M. N.

Angulo-Vinuesa, X.

Bao, X.

Bolognini, G.

M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF With 1-m Spatial Resolution Assisted be Optimized Bidirectional Raman Amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref] [PubMed]

Chen, L.

Cho, Y. T.

Corredera, P.

Dong, Y.

González Herráez, M.

Gonzalez-Herraez, M.

Hartog, A. H.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

He, Z.

Hong, J. G.

Hotate, K.

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Iribas, H.

Jackson, D. A.

Le Floch, S.

Li, W.

Li, Y.

Lin, J.

Llera, M.

Loayssa, A.

Mafang, S. F.

Martin-Lopez, S.

Mizuno, Y.

Newson, T. P.

Nikles, M.

Pasquale, F. D.

M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF With 1-m Spatial Resolution Assisted be Optimized Bidirectional Raman Amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref] [PubMed]

Robert, P. A.

Sagues, M.

Sauser, F.

Song, K. Y.

Soto, M. A.

Taki, M.

M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF With 1-m Spatial Resolution Assisted be Optimized Bidirectional Raman Amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

Thevenaz, L.

Thévenaz, L.

Urricelqui, J.

Wait, P. C.

Webb, D. J.

Yang, S.

Zou, W.

IEEE Photonics Technol. Lett. (1)

M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF With 1-m Spatial Resolution Assisted be Optimized Bidirectional Raman Amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Opt. Express (10)

K. Y. Song and S. Yang, “Simplified Brillouin optical time-domain sensor based on direct modulation of a laser diode,” Opt. Express 18(23), 24012–24018 (2010).
[Crossref] [PubMed]

X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
[Crossref] [PubMed]

H. Iribas, A. Loayssa, F. Sauser, M. Llera, and S. Le Floch, “Cyclic coding for Brillouin optical time-domain analyzers using probe dithering,” Opt. Express 25(8), 8787–8800 (2017).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref] [PubMed]

M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the BOTDA system with the tailored pump compensation where the direction of each wave is pointed by an arrow. The green square indicates the starting position of the pump pulse.
Fig. 2
Fig. 2 Experimental setup for the BOTDA system with tailored pump compensation. Inset ‘A’ shows the configuration of the FUT where three 30 cm test sections are located near the fiber end with one loose section between two strain-applied sections: AWG, arbitrary waveform generator; PS, polarization scrambler; PSW, polarization switch; SOA, semiconductor optical amplifier; EDFA, Er-doped fiber amplifier; EOM, electro-optic modulator; FBG, fiber Bragg grating; TBF, tunable bandpass filter; PD, photo detector; DAQ, data acquisition.
Fig. 3
Fig. 3 The RF waveform applied to the LD 2. The exponential change of the amplitude is determined by Eq. (7) with the attenuation coefficient (0.2 dB/km) and the length (51.2 km) of the FUT.
Fig. 4
Fig. 4 Distribution map of the BGS measured with a 50/40 ns pulse pair (a) without BDA pump, (b) with a DBA pump of a fixed spectral width, and (c) with the BDA pump for tailored compensation. (d) Maximum Brillouin gain according to the position.
Fig. 5
Fig. 5 Error (σ) of the νB according to the position with the DBA pump of a fixed spectral width and the DBA pump for tailored compensation measured using a 50/45 ns pulse pair.
Fig. 6
Fig. 6 (a) The shape (i.e. output power) of the pump pulse with (gray/black) or without (blue/violet) the tailored DBA pump with a 52/50 ns pulse pair after passing through the FUT. (b) Difference between the DPP pulses with (black) or without (blue) the tailored DBA pump after passing through the FUT. Note that different scales are used for the cases with or without the DBA pump.
Fig. 7
Fig. 7 Measurement result with a 20 cm spatial resolution: (a) Distribution map of νB. (b) Zoomed view of the test section near the end of the FUT (dashed box in (a)). (c) Measurement error (σ) according to the position. (d) Change of νB as a function of strain in the test section 1 in (b).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d P D dz =( g B P P A eff +α ) P D ,
d P P dz =( g B P S A eff + g B P AS A eff + g B P D A eff α ) P P ,
d P S dz =( g B P P A eff +α ) P S ,
d P AS dz =( g B P P A eff +α ) P AS ,
d P D dz =α P D ,
d P P dz =( g B P D A eff α ) P P ,
g B P D0 e αz A eff =α
w(z)= Δ ν B g B P D0 α A eff e αz = w 0 e αz = w 0 e αct/ n g ,

Metrics