Abstract

Modern imaging and spectroscopy systems require to implement diverse functionalities with thin thickness and wide wavelength ranges. In order to meet this demand, polarization-resolved imaging has been widely investigated with integrated circular polarizers. However, the circular polarizers which operate at the entire visible wavelengths and have a thickness of several tens of nanometers have not been developed yet. Here, a circular polarizer, operating at the entire visible wavelength range, is demonstrated using helically stacked aluminum nano-grating layers. High extinction ratio and broad operation bandwidth are simultaneously achieved by using non-resonant anisotropic characteristics of the nano-grating. It is theoretically verified that the averaged extinction ratio becomes up to 8 over the entire visible wavelength range while having a thickness of 390 nm. Also, the feasibility of the proposed structure and circular polarization selectivity at the visible wavelength range are experimentally verified. It is expected that the proposed structure will lead to extreme miniaturization of a circular polarizer and contribute greatly to the development of mobile/wearable imaging systems such as virtual reality and augmented reality displays.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband circular polarizer based on twisted plasmonic nano-disks

Mingdi Zhang, Qieni Lu, Jie Xu, and Baozhen Ge
Appl. Opt. 58(18) 4846-4852 (2019)

Stacked subwavelength gratings as circular polarization filters

Panfilo C. Deguzman and Gregory P. Nordin
Appl. Opt. 40(31) 5731-5737 (2001)

References

  • View by:
  • |
  • |
  • |

  1. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
    [Crossref] [PubMed]
  2. L. A. Nafie, “Circular polarization spectroscopy of chiral molecules,” J. Mol. Struct. 347, 83–100 (1995).
    [Crossref]
  3. W.-L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
    [Crossref] [PubMed]
  4. W. Sparks, J. H. Hough, T. A. Germer, F. Robb, and L. Kolokolova, “Remote sensing of chiral signatures on Mars,” Planet. Space Sci. 72(1), 111–115 (2012).
    [Crossref]
  5. W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
    [Crossref]
  6. W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
    [Crossref] [PubMed]
  7. A. B. Craig, Understanding Augmented Reality: Concepts and Applications (Elsevier, 2013).
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  9. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
    [Crossref]
  10. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [Crossref] [PubMed]
  11. M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
    [Crossref]
  12. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
    [Crossref]
  13. J. H. Singh, G. Nair, A. Ghosh, and A. Ghosh, “Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond,” Nanoscale 5(16), 7224–7228 (2013).
    [Crossref] [PubMed]
  14. G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
    [Crossref]
  15. M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
    [Crossref] [PubMed]
  16. Z. Li, H. Caglayan, E. Colak, J. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
    [Crossref] [PubMed]
  17. L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
    [Crossref] [PubMed]
  18. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  19. J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
    [Crossref]
  20. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
    [Crossref] [PubMed]
  21. R. Ji, S.-W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
    [Crossref] [PubMed]
  22. W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double-layer metallic crossed-gratings,” J. Opt. 13(12), 129501 (2011).
    [Crossref]
  23. Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
    [Crossref] [PubMed]
  24. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
    [Crossref] [PubMed]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  26. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
    [Crossref] [PubMed]
  27. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2010).
  28. B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
    [Crossref]
  29. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
    [Crossref]

2016 (2)

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

R. Ji, S.-W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

2015 (5)

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

W.-L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
[Crossref] [PubMed]

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

2014 (5)

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

J. H. Singh, G. Nair, A. Ghosh, and A. Ghosh, “Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond,” Nanoscale 5(16), 7224–7228 (2013).
[Crossref] [PubMed]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

W. Sparks, J. H. Hough, T. A. Germer, F. Robb, and L. Kolokolova, “Remote sensing of chiral signatures on Mars,” Planet. Space Sci. 72(1), 111–115 (2012).
[Crossref]

2011 (1)

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double-layer metallic crossed-gratings,” J. Opt. 13(12), 129501 (2011).
[Crossref]

2010 (1)

2009 (4)

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref] [PubMed]

2005 (1)

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

1995 (1)

L. A. Nafie, “Circular polarization spectroscopy of chiral molecules,” J. Mol. Struct. 347, 83–100 (1995).
[Crossref]

Ahn, S.-W.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Alù, A.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Bade, K.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Balakrishnan, K.

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Blume, L.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Brock, N.

Caglayan, H.

Chen, F.

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Chen, H.

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double-layer metallic crossed-gratings,” J. Opt. 13(12), 129501 (2011).
[Crossref]

Chen, S.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Chen, W. T.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

Chen, X.

R. Ji, S.-W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Cheng, H.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Cheng, Y.

Colak, E.

Cuscunà, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

DasSarma, P.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

DasSarma, S.

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Davis, J.

De Giorgi, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Duan, J.

Esposito, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Fan, Z.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Gao, W.

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double-layer metallic crossed-gratings,” J. Opt. 13(12), 129501 (2011).
[Crossref]

Germer, T. A.

W. Sparks, J. H. Hough, T. A. Germer, F. Robb, and L. Kolokolova, “Remote sensing of chiral signatures on Mars,” Planet. Space Sci. 72(1), 111–115 (2012).
[Crossref]

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Ghosh, A.

J. H. Singh, G. Nair, A. Ghosh, and A. Ghosh, “Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond,” Nanoscale 5(16), 7224–7228 (2013).
[Crossref] [PubMed]

J. H. Singh, G. Nair, A. Ghosh, and A. Ghosh, “Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond,” Nanoscale 5(16), 7224–7228 (2013).
[Crossref] [PubMed]

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Gong, R.

Govorov, A. O.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Grbic, A.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Guo, L. J.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

He, Y.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Hough, J.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Hough, J. H.

W. Sparks, J. H. Hough, T. A. Germer, F. Robb, and L. Kolokolova, “Remote sensing of chiral signatures on Mars,” Planet. Space Sci. 72(1), 111–115 (2012).
[Crossref]

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

Hsu, W.-L.

Huang, Y.-W.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

Ibn-Elhaj, M.

Ji, R.

R. Ji, S.-W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Kaschke, J.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Kim, J.-S.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Kim, S.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Kolokolova, L.

W. Sparks, J. H. Hough, T. A. Germer, F. Robb, and L. Kolokolova, “Remote sensing of chiral signatures on Mars,” Planet. Space Sci. 72(1), 111–115 (2012).
[Crossref]

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Kroto, S.

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Larsen, G. K.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Lee, K.-D.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Lee, S.-H.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Leung, H. M.

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double-layer metallic crossed-gratings,” J. Opt. 13(12), 129501 (2011).
[Crossref]

Li, Y.

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double-layer metallic crossed-gratings,” J. Opt. 13(12), 129501 (2011).
[Crossref]

Li, Z.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Z. Li, H. Caglayan, E. Colak, J. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
[Crossref] [PubMed]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lin, S.

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, J.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Liu, W.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Liu, X.

R. Ji, S.-W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Lu, W.

R. Ji, S.-W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Lu, Z.

Macchetto, F. D.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

Manset, N.

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Martin, W.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

Nafie, L. A.

L. A. Nafie, “Circular polarization spectroscopy of chiral molecules,” J. Mol. Struct. 347, 83–100 (1995).
[Crossref]

Nair, G.

J. H. Singh, G. Nair, A. Ghosh, and A. Ghosh, “Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond,” Nanoscale 5(16), 7224–7228 (2013).
[Crossref] [PubMed]

Ni, Z.

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

Ozbay, E.

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Park, J.-D.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Pau, S.

Pfeiffer, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Qiu, C.-W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Ray, V.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Reid, I. N.

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

Reid, N.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Robb, F.

W. Sparks, J. H. Hough, T. A. Germer, F. Robb, and L. Kolokolova, “Remote sensing of chiral signatures on Mars,” Planet. Space Sci. 72(1), 111–115 (2012).
[Crossref]

Robb, F. T.

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Roller, E.-M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sanvitto, D.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Schechner, Y. Y.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Singh, J. H.

J. H. Singh, G. Nair, A. Ghosh, and A. Ghosh, “Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond,” Nanoscale 5(16), 7224–7228 (2013).
[Crossref] [PubMed]

Soukoulis, C. M.

Sparks, W.

W. Sparks, J. H. Hough, T. A. Germer, F. Robb, and L. Kolokolova, “Remote sensing of chiral signatures on Mars,” Planet. Space Sci. 72(1), 111–115 (2012).
[Crossref]

Sparks, W. B.

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Sun, G.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

Tam, W. Y.

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double-layer metallic crossed-gratings,” J. Opt. 13(12), 129501 (2011).
[Crossref]

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Tarantini, I.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Thiel, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tian, J.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Treibitz, T.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref] [PubMed]

Tsai, D. P.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

Tsai, W.-Y.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, C.-M.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

Wang, H.

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

Wang, J.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Wang, S.-W.

R. Ji, S.-W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Wegener, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wu, L.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

Wu, P. C.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

Yang, J. K. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Yang, Z.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

Yoon, P.-W.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Yu, F.

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

Yuan, X.

Zhang, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zhang, P.

Zhang, R.

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

Zhang, W.

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

Zhao, M.

Zhao, Y.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zheng, B.

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

Zheng, Y.

Zhou, J.

Zhou, M.

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Adv. Opt. Mater. (4)

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Appl. Phys. Lett. (1)

B. Zheng, R. Zhang, M. Zhou, W. Zhang, S. Lin, Z. Ni, H. Wang, F. Yu, and H. Chen, “Broadband subwavelength imaging using non-resonant metamaterials,” Appl. Phys. Lett. 104(7), 073502 (2014).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref] [PubMed]

J. Mol. Struct. (1)

L. A. Nafie, “Circular polarization spectroscopy of chiral molecules,” J. Mol. Struct. 347, 83–100 (1995).
[Crossref]

J. Opt. (1)

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double-layer metallic crossed-gratings,” J. Opt. 13(12), 129501 (2011).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Macchetto, and W. Martin, “Circular polarization in scattered light as a possible biomarker,” J. Quant. Spectrosc. Radiat. Transf. 110(14), 1771–1779 (2009).
[Crossref]

Nano Lett. (3)

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Nanoscale (2)

R. Ji, S.-W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

J. H. Singh, G. Nair, A. Ghosh, and A. Ghosh, “Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond,” Nanoscale 5(16), 7224–7228 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Nat. Commun. (2)

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Planet. Space Sci. (1)

W. Sparks, J. H. Hough, T. A. Germer, F. Robb, and L. Kolokolova, “Remote sensing of chiral signatures on Mars,” Planet. Space Sci. 72(1), 111–115 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” Proc. Natl. Acad. Sci. U.S.A. 106(19), 7816–7821 (2009).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Other (3)

A. B. Craig, Understanding Augmented Reality: Concepts and Applications (Elsevier, 2013).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic illustration of the proposed helically stacked Al nano-grating structure for visible wavelength ranges. (b) The magnified schematic illustration of the double-layered Al nano-grating structure. The nano-gratings have period (p), width (w) and thickness (t), and they are helically stacked with twisted angle (θ) and separation (d).
Fig. 2
Fig. 2 Transmission curves of (a) Al nanorod array for the linearly polarized light and (b) helically stacked nanorod array for the circularly polarized light. The nanorods have p = 150 nm, l = 100 nm, w = t = 30 nm. The bottom nanorods are parallel to y-axis, and the upper nanorods are helically stacked with d = 50 nm and θ = 45°. (c) Transmission curves of Al nano-gratings for the linearly polarized light and (d) helically stacked nano-gratings for the circularly polarized light (d) with p = 150 nm, w = t = 30 nm, d = 50 nm and θ = 45°. (e) ER and operating bandwidth of the stacked nanorod (black) and nano-grating (red).
Fig. 3
Fig. 3 Electric current distribution in the helically stacked Al nanorods (a) for RCP incident light at 508 nm and (b) LCP incident light at 653 nm. Electric current distribution in the helically stacked Al nano-grating for (c) RCP and (d) LCP incident light at 609 nm. The white arrows indicate the direction of the induced current.
Fig. 4
Fig. 4 Transmission curves and ER for circularly polarized light as changing the number of the helically stacked nano-grating layers. The structures are constructed with left handed manner, and structure parameters are p = 150 nm, w = t = 30 nm, d = 30 nm and θ = 45°. The number of helically stacked nano-gratings for the above six plots are (a) two, (b) three, (c) four, (d) five, (e) six, and (f) seven, respectively.
Fig. 5
Fig. 5 (a) Averaged ER and (b) averaged transmission for LCP light of the four-layered Al nano-grating structure over the wavelength ranges from 400 nm to 700 nm as a function of d and θ. (c) The averaged ER and (d) averaged transmission for LCP light of the four-layered Al nano-grating structure with fixed d = 30 nm and θ = 45° as a function of t and fill factor.
Fig. 6
Fig. 6 (a) A cross-sectional SEM image of the fabricated four-layered helically stacked nano-grating structure and its magnification. The captured CCD images from the fabricated sample at (b) 532 nm, (c) 660 nm and (d) 980 nm. The left figure is for LCP incident light and the right one for RCP incident light. (e)-(g) The output intensities of the LCP light (black) and RCP light (red) along the red line of (b)-(d) are demonstrated.
Fig. 7
Fig. 7 Transmission curves for (a) the helically stacked gold nano-grating and (b) the helically stacked silver nano-grating. The structures are helically stacked with the four layers of the nano-gratings as shown in the inset of Fig. 4(c), and the structure parameters are p = 150 nm, w = t = 30 nm, d = 30 nm and θ = 45°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T cir =( T rr T rl T lr T ll )= 1 2 ( ( T xx + T yy )+i( T xy T yx ) ( T xx T yy )i( T xy + T yx ) ( T xx T yy )+i( T xy + T yx ) ( T xx + T yy )i( T xy T yx ) ),

Metrics