Abstract

A microwave photonic synthetic aperture radar (MWP SAR) is developed and experimentally demonstrated. In the transmitter, microwave photonic frequency doubling is used to generate a linearly-frequency-modulated (LFM) radar signal; while in the receiver, photonic stretch processing is employed to receive the reflection signal. The presented MWP SAR operates in Ku band with a bandwidth of 600MHz, and is evaluated through a series of inverse SAR imaging tests both in a microwave anechoic chamber and in a field trial. Its imaging performance verifies that the proposed MWP SAR works perfect and shows the potential of overcoming the conventional radar bandwidth bottleneck.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information

Anle Wang, Jianghai Wo, Xiong Luo, Yalan Wang, Wenshan Cong, Pengfei Du, Junkai Zhang, Biao Zhao, Jin Zhang, Yong Zhu, Jiangqiao Lan, and Lan Yu
Opt. Express 26(16) 20708-20717 (2018)

Photonics-based MIMO radar with high-resolution and fast detection capability

Fangzheng Zhang, Bindong Gao, and Shilong Pan
Opt. Express 26(13) 17529-17540 (2018)

Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging

Fangzheng Zhang, Qingshui Guo, Ziqian Wang, Pei Zhou, Guoqiang Zhang, Jun Sun, and Shilong Pan
Opt. Express 25(14) 16274-16281 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Melvin and J. A. Scheer, Principles of Modern Radar: Vol. II Advanced Techniques (SciTech Publishing, 2012).
  2. R. H. Walden, “Analog-to-digital conversion in the early Twenty-First Century,” in Wiley Encyclopedia of Computer Science and Engineering, Benjamin W. Wah ed. (Wiley and Sons, 2008).
  3. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
    [Crossref]
  4. J. Tsui, Digital Techniques for Wideband Receivers, 2nd ed. (SciTech, 2004).
  5. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  6. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  7. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  8. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
    [Crossref] [PubMed]
  9. R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
    [Crossref]
  10. T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
    [Crossref]
  11. W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
    [Crossref]
  12. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  13. J. D. McKinney, “Technology: Photonics illuminates the future of radar,” Nature 507(7492), 310–311 (2014).
    [Crossref] [PubMed]
  14. F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in Proceedings of International Radar Symposium, (IEEE, 2016), pp.1–4.
    [Crossref]
  15. F. Scotti, D. Onori, and F. Laghezza, “Fully Coherent S- and X-Band Photonics-Aided Radar System Demonstration,” IEEE Microw. Wirel. Compon. Lett. 25(11), 757–759 (2015).
    [Crossref]
  16. F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-Band Software-Defined Coherent Radar Based on a Single Photonic Transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
    [Crossref]
  17. F. Laghezza, F. Scotti, P. Ghelfi, and A. Bogoni, “Photonic based marine radar demonstrator,” in Proceedings of Radar Conference, (IEEE, 2015), pp. 226–230.
  18. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
    [Crossref] [PubMed]

2016 (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

2015 (3)

F. Scotti, D. Onori, and F. Laghezza, “Fully Coherent S- and X-Band Photonics-Aided Radar System Demonstration,” IEEE Microw. Wirel. Compon. Lett. 25(11), 757–759 (2015).
[Crossref]

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-Band Software-Defined Coherent Radar Based on a Single Photonic Transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

2014 (2)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

J. D. McKinney, “Technology: Photonics illuminates the future of radar,” Nature 507(7492), 310–311 (2014).
[Crossref] [PubMed]

2011 (1)

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

2010 (2)

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (2)

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ashrafi, R.

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

Azana, J.

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-Band Software-Defined Coherent Radar Based on a Single Photonic Transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in Proceedings of International Radar Symposium, (IEEE, 2016), pp.1–4.
[Crossref]

F. Laghezza, F. Scotti, P. Ghelfi, and A. Bogoni, “Photonic based marine radar demonstrator,” in Proceedings of Radar Conference, (IEEE, 2015), pp. 226–230.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chen, J.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Clark, T. R.

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Ghelfi, P.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-Band Software-Defined Coherent Radar Based on a Single Photonic Transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

F. Laghezza, F. Scotti, P. Ghelfi, and A. Bogoni, “Photonic based marine radar demonstrator,” in Proceedings of Radar Conference, (IEEE, 2015), pp. 226–230.

Kärtner, F. X.

Kim, J.

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-Band Software-Defined Coherent Radar Based on a Single Photonic Transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

F. Scotti, D. Onori, and F. Laghezza, “Fully Coherent S- and X-Band Photonics-Aided Radar System Demonstration,” IEEE Microw. Wirel. Compon. Lett. 25(11), 757–759 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

F. Laghezza, F. Scotti, P. Ghelfi, and A. Bogoni, “Photonic based marine radar demonstrator,” in Proceedings of Radar Conference, (IEEE, 2015), pp. 226–230.

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in Proceedings of International Radar Symposium, (IEEE, 2016), pp.1–4.
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Li, W.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

McKinney, J. D.

J. D. McKinney, “Technology: Photonics illuminates the future of radar,” Nature 507(7492), 310–311 (2014).
[Crossref] [PubMed]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

F. Scotti, D. Onori, and F. Laghezza, “Fully Coherent S- and X-Band Photonics-Aided Radar System Demonstration,” IEEE Microw. Wirel. Compon. Lett. 25(11), 757–759 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in Proceedings of International Radar Symposium, (IEEE, 2016), pp.1–4.
[Crossref]

Park, M. J.

Park, Y.

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

Perrott, M. H.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

F. Scotti, D. Onori, and F. Laghezza, “Fully Coherent S- and X-Band Photonics-Aided Radar System Demonstration,” IEEE Microw. Wirel. Compon. Lett. 25(11), 757–759 (2015).
[Crossref]

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-Band Software-Defined Coherent Radar Based on a Single Photonic Transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

F. Laghezza, F. Scotti, P. Ghelfi, and A. Bogoni, “Photonic based marine radar demonstrator,” in Proceedings of Radar Conference, (IEEE, 2015), pp. 226–230.

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in Proceedings of International Radar Symposium, (IEEE, 2016), pp.1–4.
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Valley, G. C.

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Waterhouse, R.

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

Yao, J.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Zhang, H.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Zhang, S.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Zou, W.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

IEEE Microw. Mag. (2)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

F. Scotti, D. Onori, and F. Laghezza, “Fully Coherent S- and X-Band Photonics-Aided Radar System Demonstration,” IEEE Microw. Wirel. Compon. Lett. 25(11), 757–759 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-Band Software-Defined Coherent Radar Based on a Single Photonic Transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (2)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

J. D. McKinney, “Technology: Photonics illuminates the future of radar,” Nature 507(7492), 310–311 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Sci. Rep. (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Other (5)

F. Laghezza, F. Scotti, P. Ghelfi, and A. Bogoni, “Photonic based marine radar demonstrator,” in Proceedings of Radar Conference, (IEEE, 2015), pp. 226–230.

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in Proceedings of International Radar Symposium, (IEEE, 2016), pp.1–4.
[Crossref]

J. Tsui, Digital Techniques for Wideband Receivers, 2nd ed. (SciTech, 2004).

W. L. Melvin and J. A. Scheer, Principles of Modern Radar: Vol. II Advanced Techniques (SciTech Publishing, 2012).

R. H. Walden, “Analog-to-digital conversion in the early Twenty-First Century,” in Wiley Encyclopedia of Computer Science and Engineering, Benjamin W. Wah ed. (Wiley and Sons, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) architechure of the MWP radar. (b) upper: the structure of the DP-DPMZM; lower: the structure of the Pol-demux coherent receiver.
Fig. 2
Fig. 2 (a) the photo of the MWP SAR setup in the MAC; (b) the photo of two static TCRs; (c) spectrum of the stretched echo from two TCRs; (d) SAR image of a pair of rotating TRCs.
Fig. 3
Fig. 3 (a) Calculated range profile of the moving airplane; (b) reconstructed inverse SAR image of the Boeing 737; (c) upper: photo of the setup in the field-trial; lower photo of the target.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

s T ( t ) = V r e c t ( t / T p ) cos [ 2 ( ω c t + k π t 2 ) ] , r e c t ( t / T p ) = { 1 , | t | T p / 2 0 , | t | > T p / 2 .
s R ( t ) = r e c t ( t 2 τ r T p ) V R cos [ 2 ω c ( t 2 τ r ) + 2 π k ( t 2 τ r ) 2 ] .
E R e f ( t ) A 1 r e c t ( t / T p ) i J 1 ( β R e f ) cos [ 2 ( ω c t + k π t 2 ) ] exp ( i ω o t )
E R ( t ) A 2 r e c t ( t / T p ) i J 1 ( β R ) cos [ 2 ( ω c t + k π t 2 ) ] exp ( i ω o t )
I n = | E R e f ( t ) + ( -1 ) n + 1 E R ( t ) | 2 = [ | E R e f ( t ) | 2 + | E R ( t ) | 2 +2Re ( ( -1 ) n + 1 E R e f ( t ) E R * ( t ) ) ]
I 1 - I 2 = [ 4Re ( E R e f ( t ) E R * ( t ) ) ] A 1 A 2 r e c t ( t / T p ) r e c t ( t / T p ) β R e f β R cos [ 2 ( ω c t + k π t 2 ) ] cos [ 2 ( ω c t + k π t 2 ) ] = A 1 A 2 π 2 V π 2 r e c t ( t / T p ) V cos [ 2 ( ω c t + k π t 2 ) ] r e c t ( t / T p ) V ( r ) R cos [ 2 ( ω c t + k π t 2 ) ] = A 1 A 2 π 2 V π 2 s R e f ( t ) s R ( t )
S p s p = A 1 A 2 π 2 V V R 2 V π 2 r e c t ( t τ r T p 2 τ r ) cos [ 2 ( ω c t + k π t 2 ) 2 ( ω c t + k π t 2 ) ] = A 1 A 2 π 2 V V R 2 V π 2 r e c t ( t τ r T p 2 τ r ) cos [ 8 π k τ r t + ( 4 ω c τ r 8 π k τ r 2 ) ] = A r e c t ( t τ r T p 2 τ r ) cos [ ω r t + ϕ r ]
Δ ω r = 8 π k Δ τ r = 8 π B Δ τ r / T p .

Metrics