Abstract

Broad-band and high-efficiency polarization converter is an imperative component in communication systems, but its functionality often clashes with the constraint of materials. Herein we theoretically and numerically demonstrate that a broad-band and high-efficiency 90° polarization rotator around 1550 nm can be realized using an ultrathin and geometry-optimized composite structure. Based on simulation results, the reflection efficiency and operation bandwidth is up to ≈80% and ≈300 nm, respectively, for the 90° polarization rotator. With similar concept, we also demonstrate a quarter-wave plate with an efficiency of 94% and bandwidth of 110 nm. The electric filed distribution indicates that the conversion behaviors are caused by the strong magnetic coupling in the designed composite structure. Furthermore, the polarization ellipticity properties are investigated to further understand the broad-band effect of the proposed polarization convertors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metallic metasurfaces for high efficient polarization conversion control in transmission mode

Tong Li, Xiaobin Hu, Huamin Chen, Chen Zhao, Yun Xu, Xin Wei, and Guofeng Song
Opt. Express 25(20) 23597-23604 (2017)

Efficient and broadband polarization conversion with the coupled metasurfaces

Cheng-ping Huang
Opt. Express 23(25) 32015-32024 (2015)

Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface

Jin Xu, Rongqiang Li, Jin Qin, Shenyun Wang, and Tiancheng Han
Opt. Express 26(16) 20913-20919 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
    [Crossref] [PubMed]
  2. Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
    [Crossref]
  3. L. Wang, S. Jiang, H. Hu, H. Song, W. Zeng, and Q. Gan, “Artificial birefringent metallic planar structures for terahertz wave polarization manipulation,” Opt. Lett. 39(2), 311–314 (2014).
    [Crossref] [PubMed]
  4. S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
    [Crossref]
  5. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [Crossref] [PubMed]
  6. J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
    [Crossref]
  7. H.Y. Meng, L.L. Wang, X. Zhai, G.D. Liu, and S.X. Xia, “A Simple design of a dulti-dand terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap,” Plasmonics, online.
  8. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref] [PubMed]
  9. B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
    [Crossref]
  10. X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
    [Crossref]
  11. B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
    [Crossref]
  12. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
    [Crossref]
  13. Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
    [Crossref]
  14. J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
    [Crossref]
  15. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  16. R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
    [Crossref]
  17. K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
    [Crossref]
  18. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  19. B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38(5), 679–681 (2013).
    [Crossref] [PubMed]
  20. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
    [Crossref] [PubMed]
  21. L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
    [Crossref]
  22. X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
    [Crossref]
  23. W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
    [Crossref]
  24. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  25. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
    [Crossref]
  26. M. Chen, J. Cai, W. Sun, L. Chang, and X. Xiao, “High-efficiency all-dielectric metasurfaces for broadband polarization conversion,” Plasmonics, online.
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
    [Crossref]
  29. Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
    [Crossref]
  30. A. Pors, S. I. Bozhevolnyi, and S. Careas, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013).
    [Crossref] [PubMed]
  31. J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
    [Crossref]
  32. Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
    [Crossref]
  33. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
    [Crossref]

2017 (1)

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

2016 (6)

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

2015 (3)

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

2014 (4)

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

L. Wang, S. Jiang, H. Hu, H. Song, W. Zeng, and Q. Gan, “Artificial birefringent metallic planar structures for terahertz wave polarization manipulation,” Opt. Lett. 39(2), 311–314 (2014).
[Crossref] [PubMed]

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

2013 (8)

B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38(5), 679–681 (2013).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

A. Pors, S. I. Bozhevolnyi, and S. Careas, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013).
[Crossref] [PubMed]

2012 (1)

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

2011 (3)

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

2010 (2)

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

2002 (1)

P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alici, K. B.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Alici, K.-B.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Alù, A.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Belov, P. A.

P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
[Crossref]

Bozhevolnyi, S. I.

Caglayan, H.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Careas, S.

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, S.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chen, X.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Cheng, H.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Cheng, Y.

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Chiang, Y. J.

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Colak, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Engheta, N.

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

Fu, Q.

Gan, Q.

Gao, X.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Gerardot, B. D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Guo, Z.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Hu, H.

Hu, Y. H.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Hu, Y.-S.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Huang, W.

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Jiang, S.

Jiang, S. C.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kafesaki, M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Koschny, T.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Li, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Li, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, L.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Li, R.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Li, T.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Li, X.

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Li, Y.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Li, Z.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Liu, G.

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Liu, Y.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Luo, C.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Ma, G.-B.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Ozbay, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Pang, Y.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Peng, J.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Peng, R.-W.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Pors, A.

Qiao, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Qin, S.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Qu, S.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Rajkumar, R.

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Shang, X.

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Shang, X. J.

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

Song, H.

Song, K.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Soukoulis, C. M.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Soukoulis, C.-M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Subramanian, V.

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Sun, C.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Tang, X. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Tian, J.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Tretyakov, S. A.

P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
[Crossref]

Wang, B.

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Wang, G.

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Wang, J.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Wang, L.

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

L. Wang, S. Jiang, H. Hu, H. Song, W. Zeng, and Q. Gan, “Artificial birefringent metallic planar structures for terahertz wave polarization manipulation,” Opt. Lett. 39(2), 311–314 (2014).
[Crossref] [PubMed]

Wang, L. L.

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

Wang, M.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Wang, Q. J.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wang, S. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wang, W.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Wang, X.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Wen, D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Wen, L.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Xie, B.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xin, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Xiong, X.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Xu, Z.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Yang, B.

Yang, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Ye, W. M.

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yen, T. J.

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Yogesh, N.

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Yu, P.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yu, X.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yuan, X.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Yuan, X. D.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Yue, F.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Yue, J.

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

Zeng, C.

Zeng, W.

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhai, X.

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Zhang, A.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Zhang, J.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, L.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhao, J.

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Zhao, R.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Zhao, X.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

Zheng, L.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Zhou, J.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhu, S. N.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Zhu, W.

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhu, Z.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Zhu, Z. H.

ACS Photonics (1)

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Appl. Phys. B (1)

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Appl. Phys. Express (2)

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Appl. Phys. Lett. (5)

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

J. Appl. Phys. (2)

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

J. Electromagn. Waves Appl. (1)

P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
[Crossref]

J. Opt. (1)

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Light Sci. Appl. (1)

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Metamaterials (Amst.) (1)

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

Nano Lett. (2)

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Phys. Rev. Lett. (2)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Plasmonics (3)

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Other (2)

H.Y. Meng, L.L. Wang, X. Zhai, G.D. Liu, and S.X. Xia, “A Simple design of a dulti-dand terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap,” Plasmonics, online.

M. Chen, J. Cai, W. Sun, L. Chang, and X. Xiao, “High-efficiency all-dielectric metasurfaces for broadband polarization conversion,” Plasmonics, online.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic diagram of the proposed design. (b) A unit cell of this design.
Fig. 2
Fig. 2 (a) The co-polarization R xx , cross-polarization R yx reflectivity, the phase difference Δφ between φ yx and φ xx , and the (PCR) for the proposed 90° polarization rotator. (b) The calculated ellipticity angle ζ and PRA χ.
Fig. 3
Fig. 3 Distributions of the electric field | E| ( a 1 a 4 ) , real E z ( b 1 b 4 ) for the upper surface of metasurface, and real E z ( c 1 c 4 ) for the bottom surface of metasurface at wavelength of 1415 nm (a1, b1, and c1), 1550 nm (a2, b2, and c2), 1679 nm (a3, b3, and c3), and 1750 nm (a4, b4, and c4), respectively.
Fig. 4
Fig. 4 (a) The co-polarization R xx , cross-polarization R yx reflectivity, the phase difference Δφ between φ yx and φ xx for the proposed quarter-wave plate. (b) The calculated ellipticity η and ellipticity angle ζ.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z ^ ×( E 1 E 2 )=0, z ^ ×( H 1 H 2 )= K s ,
K s = iω α eff P x P y ( z ^ × E 1 ).
r ij = [1i ( Z 1 + Z 2 ) P x P y ω Z 1 Z 2 α ij eff ] ( Z 2 Z 3 ) Z 2 Z 3 e 2i k 0 n 2 t 2 1i ( Z 1 Z 2 ) P x P y ω Z 1 Z 2 α ij eff [1i ( Z 1 Z 2 ) P x P y ω Z 1 Z 2 α ij eff ] ( Z 2 Z 3 ) Z 2 Z 3 e 2i k 0 n 2 t 2 1i ( Z 1 + Z 2 ) P x P y ω Z 1 Z 2 α ij eff (i,j=x,y).
ζ=0.5arcsin( 2| r xx || r yx | sin(Δφ) | r xx | 2 + | r yx | 2 ),χ=0.5arctan( 2| r xx || r yx | cos(Δφ) | r xx | 2 | r yx | 2 ).

Metrics