Abstract

We demonstrate a bistable switching liquid crystal (LC) mode utilizing a topologically self-structured dual-groove surface for degenerated easy axes of LC anchoring. In our study, the effect of the bulk elastic distortion of the LC directors on the bistable anchoring surface is theoretically analyzed for balanced bistable states based on a free energy diagram. By adjusting bulk LC chirality, we developed ideally symmetric and stable bistable anchoring and switching properties, which can be driven by a low in-plane pulsed field of about 0.7 V/µm. The fabricated device has a contrast ratio of 196:1.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of surface nematic liquid crystal anchoring strength using nano-scale surface grooves

Yoonseuk Choi, Hiroshi Yokoyama, and Jin Seog Gwag
Opt. Express 21(10) 12135-12144 (2013)

Voltage-controlled formation of short pitch chiral liquid crystal structures based on high-resolution surface topography

Inge Nys, Jeroen Beeckman, and Kristiaan Neyts
Opt. Express 27(8) 11492-11502 (2019)

Effects of chiral dopant on electro-optical properties of nematic liquid crystal cells under in-plane switching and non-uniform vertical electric fields

Guan-Jhong Lin, Tien-Jung Chen, Yu-Ting Lin, Jin-Jei Wu, and Ying-Jay Yang
Opt. Mater. Express 4(12) 2468-2477 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
    [Crossref]
  2. Z. L. Xie and H. S. Kwok, “New bistable twisted nematic liquid crystal displays,” J. Appl. Phys. 84(1), 77–82 (1998).
    [Crossref]
  3. B. Wang and P. J. Bos, “Design optimized bistable twisted nematic liquid crystal display,” J. Appl. Phys. 90(2), 552–555 (2001).
    [Crossref]
  4. C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-switchable bistable twisted nematic liquid crystal optical switch,” Opt. Express 21(4), 4361–4366 (2013).
    [Crossref] [PubMed]
  5. X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
    [Crossref]
  6. S. H. Lee, K. H. Park, T. H. Yoon, and J. C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
    [Crossref]
  7. S. H. Lee, G. D. Lee, T. H. Yoon, and J. C. Kim, “Effect of azimuthal anchoring strength on stability in a bistable chiral splay nematic liquid crystal device,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 041704 (2004).
    [Crossref] [PubMed]
  8. C. G. Jhun, C. P. Chen, S. L. Lee, J. I. Back, T. H. Yoon, and J. C. Kim, “Disclination velocity in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45(6A6R), 5063–5068 (2006).
    [Crossref]
  9. S. H. Lee, T. H. Yoon, and J. C. Kim, “Optimized configuration for transmissive and reflective bistable chiral-splay nematic liquid crystal device,” Appl. Phys. Lett. 88(18), 181101 (2006).
    [Crossref]
  10. J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, “Viewing angle control mode using nematic bistability,” Opt. Express 16(4), 2663–2669 (2008).
    [Crossref] [PubMed]
  11. C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
    [Crossref]
  12. I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
    [Crossref]
  13. I. Dozov and Ph. Martinot-Langarde, “First-order breaking transition of tilted nematic anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7442–7446 (1998).
    [Crossref]
  14. Z. Zhuang, Y. J. Kim, and J. S. Patel, “Optimized configuration for reflective bistable twisted nematic displays,” Appl. Phys. Lett. 75(9), 1225–1227 (1999).
    [Crossref]
  15. S. Saito, T. Takahashi, T. Chiba, and S. Tsuchida, “Influence of azimuth anchoring on bistable properties of bistable nematic liquid crystal cells,” Jpn. J. Appl. Phys. 41(1), 3841–3845 (2002).
    [Crossref]
  16. I. Dozov, D.-N. Stoenescu, S. Lanmarque-Forget, S. Joly, J.-C. Dubois, and P. Martinot-Lagarde, “Development of low anchoring strength liquid crystal mixtures for bistable nematic displays,” J. Inf. Disp. 6(3), 1–5 (2005).
    [Crossref]
  17. E. L. Wood, G. P. Bryan-Brown, P. Brett, A. Graham, J. C. Jones, and J. R. Hughes, “11.2: Zenithal bistable device (ZBDTM) suitable for portable applications,” SID Int. Symp. Digest Tech. Pap. 31(1), 124–127 (2000).
  18. C. Uche, S. J. Elston, and L. A. Parry-Jones, “Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures,” J. Phys. D Appl. Phys. 38(13), 2283–2291 (2005).
    [Crossref]
  19. T. J. Spencer and C. M. Care, “Lattice Boltzmann scheme for modeling liquid-crystal dynamics: Zenithal bistable device in the presence of defect motion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061708 (2006).
    [Crossref] [PubMed]
  20. R. Barberi and G. Durand, “Electrochirally controlled bistable surface switching in nematic liquid crystals,” Appl. Phys. Lett. 58(25), 2907–2909 (1991).
    [Crossref]
  21. R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu, “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84(3), 1321–1324 (1998).
    [Crossref]
  22. J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett. 78(20), 3005–3007 (2001).
    [Crossref]
  23. J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
    [Crossref] [PubMed]
  24. J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett. 92(24), 241120 (2008).
    [Crossref]
  25. J. Niitsuma, M. Yoneya, and H. Yokoyama, “Surface nematic liquid crystal bistability on low-symmetry photoalignment micropatterns,” Liq. Cryst. 31(1), 31–36 (2009).
    [Crossref]
  26. J. Niitsuma, M. Yoneya, and H. Yokoyama, “Azimuthal dependence of switching field strength for nematic liquid crystal bistability on patterned alignment layers,” J. Appl. Phys. 111(10), 103507 (2012).
    [Crossref]
  27. E.-K. Lee and J.-H. Kim, “Multistability of nematic liquid crystals realized on microscopic orientation patterns,” J. Appl. Phys. 102(3), 036102 (2007).
    [Crossref]
  28. S. Kitson and A. Geisow, “Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states,” Appl. Phys. Lett. 80(19), 3635–3637 (2002).
    [Crossref]
  29. M. Yoneya, J.-H. Kim, and H. Yokoyama, “Simple model for patterned bidirectional anchoring of nematic liquid crystal and its bistability,” Appl. Phys. Lett. 80(3), 374–376 (2002).
    [Crossref]
  30. I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
    [Crossref]
  31. C.-Y. Lee, M.-C. Tseng, J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Bistable nano-structured photoalignment surface by nanoimprint lithography,” J. Soc. Inf. Disp. 23(4), 163–169 (2015).
    [Crossref]
  32. Y. Yi, M. Nakata, A. R. Martin, and N. A. Clark, “Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography,” Appl. Phys. Lett. 90(16), 163510 (2007).
    [Crossref]
  33. J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
    [Crossref]
  34. C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram, “Multistable alignment states in nematic liquid crystal filled wells,” Appl. Phys. Lett. 90(11), 111913 (2007).
    [Crossref]
  35. J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
    [Crossref]
  36. J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
    [Crossref]
  37. C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
    [Crossref]
  38. Y. Choi, H. Yokoyama, and J. S. Gwag, “Determination of surface nematic liquid crystal anchoring strength using nano-scale surface grooves,” Opt. Express 21(10), 12135–12144 (2013).
    [Crossref] [PubMed]
  39. J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
    [Crossref] [PubMed]
  40. J. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
    [Crossref] [PubMed]
  41. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
    [Crossref]
  42. D. W. Berreman, “Alignment of liquid crystals by grooved surface,” Mol. Cryst. Liq. Cryst. 23(3), 215–231 (1973).
    [Crossref]
  43. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
    [Crossref]
  44. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
    [Crossref]
  45. H. Yokoyama and H. A. Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystalwall interface from director distortions at high fields,” J. Appl. Phys. 57(10), 4520–4526 (1985).
    [Crossref]
  46. T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(8), 4434–4437 (1996).
    [Crossref]
  47. X. Nie, R. Lu, H. Xianyu, X. T. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
    [Crossref]

2015 (1)

C.-Y. Lee, M.-C. Tseng, J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Bistable nano-structured photoalignment surface by nanoimprint lithography,” J. Soc. Inf. Disp. 23(4), 163–169 (2015).
[Crossref]

2013 (2)

2012 (2)

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Azimuthal dependence of switching field strength for nematic liquid crystal bistability on patterned alignment layers,” J. Appl. Phys. 111(10), 103507 (2012).
[Crossref]

2010 (1)

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

2009 (2)

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Surface nematic liquid crystal bistability on low-symmetry photoalignment micropatterns,” Liq. Cryst. 31(1), 31–36 (2009).
[Crossref]

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[Crossref]

2008 (4)

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[Crossref]

J. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[Crossref] [PubMed]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett. 92(24), 241120 (2008).
[Crossref]

J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, “Viewing angle control mode using nematic bistability,” Opt. Express 16(4), 2663–2669 (2008).
[Crossref] [PubMed]

2007 (6)

E.-K. Lee and J.-H. Kim, “Multistability of nematic liquid crystals realized on microscopic orientation patterns,” J. Appl. Phys. 102(3), 036102 (2007).
[Crossref]

Y. Yi, M. Nakata, A. R. Martin, and N. A. Clark, “Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography,” Appl. Phys. Lett. 90(16), 163510 (2007).
[Crossref]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[Crossref]

C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram, “Multistable alignment states in nematic liquid crystal filled wells,” Appl. Phys. Lett. 90(11), 111913 (2007).
[Crossref]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[Crossref] [PubMed]

X. Nie, R. Lu, H. Xianyu, X. T. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

2006 (3)

T. J. Spencer and C. M. Care, “Lattice Boltzmann scheme for modeling liquid-crystal dynamics: Zenithal bistable device in the presence of defect motion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061708 (2006).
[Crossref] [PubMed]

C. G. Jhun, C. P. Chen, S. L. Lee, J. I. Back, T. H. Yoon, and J. C. Kim, “Disclination velocity in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45(6A6R), 5063–5068 (2006).
[Crossref]

S. H. Lee, T. H. Yoon, and J. C. Kim, “Optimized configuration for transmissive and reflective bistable chiral-splay nematic liquid crystal device,” Appl. Phys. Lett. 88(18), 181101 (2006).
[Crossref]

2005 (3)

I. Dozov, D.-N. Stoenescu, S. Lanmarque-Forget, S. Joly, J.-C. Dubois, and P. Martinot-Lagarde, “Development of low anchoring strength liquid crystal mixtures for bistable nematic displays,” J. Inf. Disp. 6(3), 1–5 (2005).
[Crossref]

C. Uche, S. J. Elston, and L. A. Parry-Jones, “Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures,” J. Phys. D Appl. Phys. 38(13), 2283–2291 (2005).
[Crossref]

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

2004 (2)

S. H. Lee, G. D. Lee, T. H. Yoon, and J. C. Kim, “Effect of azimuthal anchoring strength on stability in a bistable chiral splay nematic liquid crystal device,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 041704 (2004).
[Crossref] [PubMed]

X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
[Crossref]

2003 (1)

S. H. Lee, K. H. Park, T. H. Yoon, and J. C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

2002 (4)

S. Saito, T. Takahashi, T. Chiba, and S. Tsuchida, “Influence of azimuth anchoring on bistable properties of bistable nematic liquid crystal cells,” Jpn. J. Appl. Phys. 41(1), 3841–3845 (2002).
[Crossref]

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[Crossref] [PubMed]

S. Kitson and A. Geisow, “Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states,” Appl. Phys. Lett. 80(19), 3635–3637 (2002).
[Crossref]

M. Yoneya, J.-H. Kim, and H. Yokoyama, “Simple model for patterned bidirectional anchoring of nematic liquid crystal and its bistability,” Appl. Phys. Lett. 80(3), 374–376 (2002).
[Crossref]

2001 (2)

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett. 78(20), 3005–3007 (2001).
[Crossref]

B. Wang and P. J. Bos, “Design optimized bistable twisted nematic liquid crystal display,” J. Appl. Phys. 90(2), 552–555 (2001).
[Crossref]

2000 (1)

E. L. Wood, G. P. Bryan-Brown, P. Brett, A. Graham, J. C. Jones, and J. R. Hughes, “11.2: Zenithal bistable device (ZBDTM) suitable for portable applications,” SID Int. Symp. Digest Tech. Pap. 31(1), 124–127 (2000).

1999 (2)

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Optimized configuration for reflective bistable twisted nematic displays,” Appl. Phys. Lett. 75(9), 1225–1227 (1999).
[Crossref]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[Crossref]

1998 (4)

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[Crossref]

I. Dozov and Ph. Martinot-Langarde, “First-order breaking transition of tilted nematic anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7442–7446 (1998).
[Crossref]

Z. L. Xie and H. S. Kwok, “New bistable twisted nematic liquid crystal displays,” J. Appl. Phys. 84(1), 77–82 (1998).
[Crossref]

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu, “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84(3), 1321–1324 (1998).
[Crossref]

1997 (1)

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

1996 (1)

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(8), 4434–4437 (1996).
[Crossref]

1991 (1)

R. Barberi and G. Durand, “Electrochirally controlled bistable surface switching in nematic liquid crystals,” Appl. Phys. Lett. 58(25), 2907–2909 (1991).
[Crossref]

1985 (1)

H. Yokoyama and H. A. Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystalwall interface from director distortions at high fields,” J. Appl. Phys. 57(10), 4520–4526 (1985).
[Crossref]

1981 (1)

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

1973 (1)

D. W. Berreman, “Alignment of liquid crystals by grooved surface,” Mol. Cryst. Liq. Cryst. 23(3), 215–231 (1973).
[Crossref]

1972 (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[Crossref]

Akahane, T.

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(8), 4434–4437 (1996).
[Crossref]

Alexe-Ionescu, A. L.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu, “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84(3), 1321–1324 (1998).
[Crossref]

Back, J. I.

C. G. Jhun, C. P. Chen, S. L. Lee, J. I. Back, T. H. Yoon, and J. C. Kim, “Disclination velocity in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45(6A6R), 5063–5068 (2006).
[Crossref]

Barberi, R.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu, “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84(3), 1321–1324 (1998).
[Crossref]

R. Barberi and G. Durand, “Electrochirally controlled bistable surface switching in nematic liquid crystals,” Appl. Phys. Lett. 58(25), 2907–2909 (1991).
[Crossref]

Berreman, D. W.

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

D. W. Berreman, “Alignment of liquid crystals by grooved surface,” Mol. Cryst. Liq. Cryst. 23(3), 215–231 (1973).
[Crossref]

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[Crossref]

Bonvent, J. J.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu, “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84(3), 1321–1324 (1998).
[Crossref]

Bos, P. J.

B. Wang and P. J. Bos, “Design optimized bistable twisted nematic liquid crystal display,” J. Appl. Phys. 90(2), 552–555 (2001).
[Crossref]

Bowden, N.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[Crossref]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[Crossref]

Brett, P.

E. L. Wood, G. P. Bryan-Brown, P. Brett, A. Graham, J. C. Jones, and J. R. Hughes, “11.2: Zenithal bistable device (ZBDTM) suitable for portable applications,” SID Int. Symp. Digest Tech. Pap. 31(1), 124–127 (2000).

Brittain, S.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[Crossref]

Brown, C. V.

C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram, “Multistable alignment states in nematic liquid crystal filled wells,” Appl. Phys. Lett. 90(11), 111913 (2007).
[Crossref]

Bryan-Brown, G. P.

E. L. Wood, G. P. Bryan-Brown, P. Brett, A. Graham, J. C. Jones, and J. R. Hughes, “11.2: Zenithal bistable device (ZBDTM) suitable for portable applications,” SID Int. Symp. Digest Tech. Pap. 31(1), 124–127 (2000).

Carbone, G.

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

Care, C. M.

T. J. Spencer and C. M. Care, “Lattice Boltzmann scheme for modeling liquid-crystal dynamics: Zenithal bistable device in the presence of defect motion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061708 (2006).
[Crossref] [PubMed]

Chen, C. P.

C. G. Jhun, C. P. Chen, S. L. Lee, J. I. Back, T. H. Yoon, and J. C. Kim, “Disclination velocity in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45(6A6R), 5063–5068 (2006).
[Crossref]

Chen, K.

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

Chiba, T.

S. Saito, T. Takahashi, T. Chiba, and S. Tsuchida, “Influence of azimuth anchoring on bistable properties of bistable nematic liquid crystal cells,” Jpn. J. Appl. Phys. 41(1), 3841–3845 (2002).
[Crossref]

Chigrinov, V. G.

C.-Y. Lee, M.-C. Tseng, J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Bistable nano-structured photoalignment surface by nanoimprint lithography,” J. Soc. Inf. Disp. 23(4), 163–169 (2015).
[Crossref]

Choi, Y.

Clark, N. A.

Y. Yi, M. Nakata, A. R. Martin, and N. A. Clark, “Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography,” Appl. Phys. Lett. 90(16), 163510 (2007).
[Crossref]

Davidson, A. J.

C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram, “Multistable alignment states in nematic liquid crystal filled wells,” Appl. Phys. Lett. 90(11), 111913 (2007).
[Crossref]

Dozov, I.

I. Dozov, D.-N. Stoenescu, S. Lanmarque-Forget, S. Joly, J.-C. Dubois, and P. Martinot-Lagarde, “Development of low anchoring strength liquid crystal mixtures for bistable nematic displays,” J. Inf. Disp. 6(3), 1–5 (2005).
[Crossref]

I. Dozov and Ph. Martinot-Langarde, “First-order breaking transition of tilted nematic anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7442–7446 (1998).
[Crossref]

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

Dubois, J.-C.

I. Dozov, D.-N. Stoenescu, S. Lanmarque-Forget, S. Joly, J.-C. Dubois, and P. Martinot-Lagarde, “Development of low anchoring strength liquid crystal mixtures for bistable nematic displays,” J. Inf. Disp. 6(3), 1–5 (2005).
[Crossref]

Durand, G.

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

R. Barberi and G. Durand, “Electrochirally controlled bistable surface switching in nematic liquid crystals,” Appl. Phys. Lett. 58(25), 2907–2909 (1991).
[Crossref]

Elston, S. J.

C. Uche, S. J. Elston, and L. A. Parry-Jones, “Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures,” J. Phys. D Appl. Phys. 38(13), 2283–2291 (2005).
[Crossref]

Evans, A. G.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[Crossref]

Fukuda, J.

J. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[Crossref] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[Crossref] [PubMed]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[Crossref]

Geisow, A.

S. Kitson and A. Geisow, “Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states,” Appl. Phys. Lett. 80(19), 3635–3637 (2002).
[Crossref]

Giocondo, M.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu, “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84(3), 1321–1324 (1998).
[Crossref]

Graham, A.

E. L. Wood, G. P. Bryan-Brown, P. Brett, A. Graham, J. C. Jones, and J. R. Hughes, “11.2: Zenithal bistable device (ZBDTM) suitable for portable applications,” SID Int. Symp. Digest Tech. Pap. 31(1), 124–127 (2000).

Gwag, J. S.

Y. Choi, H. Yokoyama, and J. S. Gwag, “Determination of surface nematic liquid crystal anchoring strength using nano-scale surface grooves,” Opt. Express 21(10), 12135–12144 (2013).
[Crossref] [PubMed]

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[Crossref]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[Crossref]

J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, “Viewing angle control mode using nematic bistability,” Opt. Express 16(4), 2663–2669 (2008).
[Crossref] [PubMed]

J. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[Crossref] [PubMed]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[Crossref]

Han, Y.

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

Heffner, W. R.

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

Ho, J. Y.-L.

C.-Y. Lee, M.-C. Tseng, J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Bistable nano-structured photoalignment surface by nanoimprint lithography,” J. Soc. Inf. Disp. 23(4), 163–169 (2015).
[Crossref]

Huck, W. T. S.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[Crossref]

Hughes, J. R.

E. L. Wood, G. P. Bryan-Brown, P. Brett, A. Graham, J. C. Jones, and J. R. Hughes, “11.2: Zenithal bistable device (ZBDTM) suitable for portable applications,” SID Int. Symp. Digest Tech. Pap. 31(1), 124–127 (2000).

Hutchinson, J. W.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[Crossref]

Iovane, M.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu, “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84(3), 1321–1324 (1998).
[Crossref]

Jhun, C. G.

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

C. G. Jhun, C. P. Chen, S. L. Lee, J. I. Back, T. H. Yoon, and J. C. Kim, “Disclination velocity in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45(6A6R), 5063–5068 (2006).
[Crossref]

Joly, S.

I. Dozov, D.-N. Stoenescu, S. Lanmarque-Forget, S. Joly, J.-C. Dubois, and P. Martinot-Lagarde, “Development of low anchoring strength liquid crystal mixtures for bistable nematic displays,” J. Inf. Disp. 6(3), 1–5 (2005).
[Crossref]

Jones, J. C.

E. L. Wood, G. P. Bryan-Brown, P. Brett, A. Graham, J. C. Jones, and J. R. Hughes, “11.2: Zenithal bistable device (ZBDTM) suitable for portable applications,” SID Int. Symp. Digest Tech. Pap. 31(1), 124–127 (2000).

Joo, K. I.

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

Jung, U.-S.

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

Kaneko, H.

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(8), 4434–4437 (1996).
[Crossref]

Kang, S.-W.

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

Kim, H.-R.

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

Kim, J. C.

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, “Viewing angle control mode using nematic bistability,” Opt. Express 16(4), 2663–2669 (2008).
[Crossref] [PubMed]

S. H. Lee, T. H. Yoon, and J. C. Kim, “Optimized configuration for transmissive and reflective bistable chiral-splay nematic liquid crystal device,” Appl. Phys. Lett. 88(18), 181101 (2006).
[Crossref]

C. G. Jhun, C. P. Chen, S. L. Lee, J. I. Back, T. H. Yoon, and J. C. Kim, “Disclination velocity in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45(6A6R), 5063–5068 (2006).
[Crossref]

S. H. Lee, G. D. Lee, T. H. Yoon, and J. C. Kim, “Effect of azimuthal anchoring strength on stability in a bistable chiral splay nematic liquid crystal device,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 041704 (2004).
[Crossref] [PubMed]

S. H. Lee, K. H. Park, T. H. Yoon, and J. C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

Kim, J.-H.

J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, “Viewing angle control mode using nematic bistability,” Opt. Express 16(4), 2663–2669 (2008).
[Crossref] [PubMed]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[Crossref]

E.-K. Lee and J.-H. Kim, “Multistability of nematic liquid crystals realized on microscopic orientation patterns,” J. Appl. Phys. 102(3), 036102 (2007).
[Crossref]

M. Yoneya, J.-H. Kim, and H. Yokoyama, “Simple model for patterned bidirectional anchoring of nematic liquid crystal and its bistability,” Appl. Phys. Lett. 80(3), 374–376 (2002).
[Crossref]

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[Crossref] [PubMed]

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett. 78(20), 3005–3007 (2001).
[Crossref]

Kim, K.

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

Kim, M.-E.

Kim, Y. J.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Optimized configuration for reflective bistable twisted nematic displays,” Appl. Phys. Lett. 75(9), 1225–1227 (1999).
[Crossref]

Kimura, M.

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(8), 4434–4437 (1996).
[Crossref]

Kitson, S.

S. Kitson and A. Geisow, “Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states,” Appl. Phys. Lett. 80(19), 3635–3637 (2002).
[Crossref]

Kwok, H. S.

X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
[Crossref]

Z. L. Xie and H. S. Kwok, “New bistable twisted nematic liquid crystal displays,” J. Appl. Phys. 84(1), 77–82 (1998).
[Crossref]

Kwok, H.-S.

C.-Y. Lee, M.-C. Tseng, J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Bistable nano-structured photoalignment surface by nanoimprint lithography,” J. Soc. Inf. Disp. 23(4), 163–169 (2015).
[Crossref]

Kwon, J. H.

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[Crossref]

Kwon, S.-B.

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

Lanmarque-Forget, S.

I. Dozov, D.-N. Stoenescu, S. Lanmarque-Forget, S. Joly, J.-C. Dubois, and P. Martinot-Lagarde, “Development of low anchoring strength liquid crystal mixtures for bistable nematic displays,” J. Inf. Disp. 6(3), 1–5 (2005).
[Crossref]

Lee, C.-Y.

C.-Y. Lee, M.-C. Tseng, J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Bistable nano-structured photoalignment surface by nanoimprint lithography,” J. Soc. Inf. Disp. 23(4), 163–169 (2015).
[Crossref]

Lee, E.-K.

E.-K. Lee and J.-H. Kim, “Multistability of nematic liquid crystals realized on microscopic orientation patterns,” J. Appl. Phys. 102(3), 036102 (2007).
[Crossref]

Lee, G. D.

S. H. Lee, G. D. Lee, T. H. Yoon, and J. C. Kim, “Effect of azimuthal anchoring strength on stability in a bistable chiral splay nematic liquid crystal device,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 041704 (2004).
[Crossref] [PubMed]

Lee, J. H.

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

Lee, S. H.

S. H. Lee, T. H. Yoon, and J. C. Kim, “Optimized configuration for transmissive and reflective bistable chiral-splay nematic liquid crystal device,” Appl. Phys. Lett. 88(18), 181101 (2006).
[Crossref]

S. H. Lee, G. D. Lee, T. H. Yoon, and J. C. Kim, “Effect of azimuthal anchoring strength on stability in a bistable chiral splay nematic liquid crystal device,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 041704 (2004).
[Crossref] [PubMed]

S. H. Lee, K. H. Park, T. H. Yoon, and J. C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

Lee, S. L.

C. G. Jhun, C. P. Chen, S. L. Lee, J. I. Back, T. H. Yoon, and J. C. Kim, “Disclination velocity in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45(6A6R), 5063–5068 (2006).
[Crossref]

Lee, Y.-J.

Lin, T.-H.

Lu, R.

X. Nie, R. Lu, H. Xianyu, X. T. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Martin, A. R.

Y. Yi, M. Nakata, A. R. Martin, and N. A. Clark, “Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography,” Appl. Phys. Lett. 90(16), 163510 (2007).
[Crossref]

Martinot-Lagarde, P.

I. Dozov, D.-N. Stoenescu, S. Lanmarque-Forget, S. Joly, J.-C. Dubois, and P. Martinot-Lagarde, “Development of low anchoring strength liquid crystal mixtures for bistable nematic displays,” J. Inf. Disp. 6(3), 1–5 (2005).
[Crossref]

Martinot-Langarde, Ph.

I. Dozov and Ph. Martinot-Langarde, “First-order breaking transition of tilted nematic anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7442–7446 (1998).
[Crossref]

Moon, J.-H.

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

Mottram, N. J.

C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram, “Multistable alignment states in nematic liquid crystal filled wells,” Appl. Phys. Lett. 90(11), 111913 (2007).
[Crossref]

Nakata, M.

Y. Yi, M. Nakata, A. R. Martin, and N. A. Clark, “Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography,” Appl. Phys. Lett. 90(16), 163510 (2007).
[Crossref]

Nie, X.

X. Nie, R. Lu, H. Xianyu, X. T. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Niitsuma, J.

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Azimuthal dependence of switching field strength for nematic liquid crystal bistability on patterned alignment layers,” J. Appl. Phys. 111(10), 103507 (2012).
[Crossref]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Surface nematic liquid crystal bistability on low-symmetry photoalignment micropatterns,” Liq. Cryst. 31(1), 31–36 (2009).
[Crossref]

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[Crossref]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett. 92(24), 241120 (2008).
[Crossref]

Nobili, M.

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

Oh-e, M.

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[Crossref]

Park, C.

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

Park, J.-S.

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

Park, K. H.

S. H. Lee, K. H. Park, T. H. Yoon, and J. C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

Park, K.-W.

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

Park, M.-K.

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

Parry-Jones, L. A.

C. Uche, S. J. Elston, and L. A. Parry-Jones, “Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures,” J. Phys. D Appl. Phys. 38(13), 2283–2291 (2005).
[Crossref]

Patel, J. S.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Optimized configuration for reflective bistable twisted nematic displays,” Appl. Phys. Lett. 75(9), 1225–1227 (1999).
[Crossref]

Paul, K. E.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[Crossref]

Rosenblatt, C.

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

Saito, S.

S. Saito, T. Takahashi, T. Chiba, and S. Tsuchida, “Influence of azimuth anchoring on bistable properties of bistable nematic liquid crystal cells,” Jpn. J. Appl. Phys. 41(1), 3841–3845 (2002).
[Crossref]

Spencer, T. J.

T. J. Spencer and C. M. Care, “Lattice Boltzmann scheme for modeling liquid-crystal dynamics: Zenithal bistable device in the presence of defect motion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061708 (2006).
[Crossref] [PubMed]

Sprang, H. A.

H. Yokoyama and H. A. Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystalwall interface from director distortions at high fields,” J. Appl. Phys. 57(10), 4520–4526 (1985).
[Crossref]

Stoenescu, D.-N.

I. Dozov, D.-N. Stoenescu, S. Lanmarque-Forget, S. Joly, J.-C. Dubois, and P. Martinot-Lagarde, “Development of low anchoring strength liquid crystal mixtures for bistable nematic displays,” J. Inf. Disp. 6(3), 1–5 (2005).
[Crossref]

Syed, I. M.

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

Takahashi, T.

S. Saito, T. Takahashi, T. Chiba, and S. Tsuchida, “Influence of azimuth anchoring on bistable properties of bistable nematic liquid crystal cells,” Jpn. J. Appl. Phys. 41(1), 3841–3845 (2002).
[Crossref]

Tsakonas, C.

C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram, “Multistable alignment states in nematic liquid crystal filled wells,” Appl. Phys. Lett. 90(11), 111913 (2007).
[Crossref]

Tseng, M.-C.

C.-Y. Lee, M.-C. Tseng, J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Bistable nano-structured photoalignment surface by nanoimprint lithography,” J. Soc. Inf. Disp. 23(4), 163–169 (2015).
[Crossref]

Tsuchida, S.

S. Saito, T. Takahashi, T. Chiba, and S. Tsuchida, “Influence of azimuth anchoring on bistable properties of bistable nematic liquid crystal cells,” Jpn. J. Appl. Phys. 41(1), 3841–3845 (2002).
[Crossref]

Uche, C.

C. Uche, S. J. Elston, and L. A. Parry-Jones, “Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures,” J. Phys. D Appl. Phys. 38(13), 2283–2291 (2005).
[Crossref]

Wang, B.

B. Wang and P. J. Bos, “Design optimized bistable twisted nematic liquid crystal display,” J. Appl. Phys. 90(2), 552–555 (2001).
[Crossref]

Wang, C.-T.

Wen, B.

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

Whitesides, G. M.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[Crossref]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[Crossref]

Wood, E. L.

E. L. Wood, G. P. Bryan-Brown, P. Brett, A. Graham, J. C. Jones, and J. R. Hughes, “11.2: Zenithal bistable device (ZBDTM) suitable for portable applications,” SID Int. Symp. Digest Tech. Pap. 31(1), 124–127 (2000).

Wu, S.-T.

X. Nie, R. Lu, H. Xianyu, X. T. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Wu, X. T.

X. Nie, R. Lu, H. Xianyu, X. T. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Wu, Y.-C.

Xianyu, H.

X. Nie, R. Lu, H. Xianyu, X. T. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Xie, Z. L.

Z. L. Xie and H. S. Kwok, “New bistable twisted nematic liquid crystal displays,” J. Appl. Phys. 84(1), 77–82 (1998).
[Crossref]

Yamamoto, J.

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett. 78(20), 3005–3007 (2001).
[Crossref]

Yi, Y.

Y. Yi, M. Nakata, A. R. Martin, and N. A. Clark, “Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography,” Appl. Phys. Lett. 90(16), 163510 (2007).
[Crossref]

Yokoyama, H.

Y. Choi, H. Yokoyama, and J. S. Gwag, “Determination of surface nematic liquid crystal anchoring strength using nano-scale surface grooves,” Opt. Express 21(10), 12135–12144 (2013).
[Crossref] [PubMed]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Azimuthal dependence of switching field strength for nematic liquid crystal bistability on patterned alignment layers,” J. Appl. Phys. 111(10), 103507 (2012).
[Crossref]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Surface nematic liquid crystal bistability on low-symmetry photoalignment micropatterns,” Liq. Cryst. 31(1), 31–36 (2009).
[Crossref]

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[Crossref]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[Crossref]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett. 92(24), 241120 (2008).
[Crossref]

J. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[Crossref] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[Crossref] [PubMed]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[Crossref]

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[Crossref] [PubMed]

M. Yoneya, J.-H. Kim, and H. Yokoyama, “Simple model for patterned bidirectional anchoring of nematic liquid crystal and its bistability,” Appl. Phys. Lett. 80(3), 374–376 (2002).
[Crossref]

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett. 78(20), 3005–3007 (2001).
[Crossref]

H. Yokoyama and H. A. Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystalwall interface from director distortions at high fields,” J. Appl. Phys. 57(10), 4520–4526 (1985).
[Crossref]

Yoneya, M.

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Azimuthal dependence of switching field strength for nematic liquid crystal bistability on patterned alignment layers,” J. Appl. Phys. 111(10), 103507 (2012).
[Crossref]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Surface nematic liquid crystal bistability on low-symmetry photoalignment micropatterns,” Liq. Cryst. 31(1), 31–36 (2009).
[Crossref]

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[Crossref]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[Crossref]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett. 92(24), 241120 (2008).
[Crossref]

J. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[Crossref] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[Crossref] [PubMed]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[Crossref]

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[Crossref] [PubMed]

M. Yoneya, J.-H. Kim, and H. Yokoyama, “Simple model for patterned bidirectional anchoring of nematic liquid crystal and its bistability,” Appl. Phys. Lett. 80(3), 374–376 (2002).
[Crossref]

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett. 78(20), 3005–3007 (2001).
[Crossref]

Yoon, T. H.

S. H. Lee, T. H. Yoon, and J. C. Kim, “Optimized configuration for transmissive and reflective bistable chiral-splay nematic liquid crystal device,” Appl. Phys. Lett. 88(18), 181101 (2006).
[Crossref]

C. G. Jhun, C. P. Chen, S. L. Lee, J. I. Back, T. H. Yoon, and J. C. Kim, “Disclination velocity in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45(6A6R), 5063–5068 (2006).
[Crossref]

S. H. Lee, G. D. Lee, T. H. Yoon, and J. C. Kim, “Effect of azimuthal anchoring strength on stability in a bistable chiral splay nematic liquid crystal device,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 041704 (2004).
[Crossref] [PubMed]

S. H. Lee, K. H. Park, T. H. Yoon, and J. C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

Yoon, T.-H.

Yu, X. J.

X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
[Crossref]

Zhuang, Z.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Optimized configuration for reflective bistable twisted nematic displays,” Appl. Phys. Lett. 75(9), 1225–1227 (1999).
[Crossref]

Appl. Phys. Lett. (16)

X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
[Crossref]

S. H. Lee, K. H. Park, T. H. Yoon, and J. C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

S. H. Lee, T. H. Yoon, and J. C. Kim, “Optimized configuration for transmissive and reflective bistable chiral-splay nematic liquid crystal device,” Appl. Phys. Lett. 88(18), 181101 (2006).
[Crossref]

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Optimized configuration for reflective bistable twisted nematic displays,” Appl. Phys. Lett. 75(9), 1225–1227 (1999).
[Crossref]

R. Barberi and G. Durand, “Electrochirally controlled bistable surface switching in nematic liquid crystals,” Appl. Phys. Lett. 58(25), 2907–2909 (1991).
[Crossref]

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett. 78(20), 3005–3007 (2001).
[Crossref]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett. 92(24), 241120 (2008).
[Crossref]

S. Kitson and A. Geisow, “Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states,” Appl. Phys. Lett. 80(19), 3635–3637 (2002).
[Crossref]

M. Yoneya, J.-H. Kim, and H. Yokoyama, “Simple model for patterned bidirectional anchoring of nematic liquid crystal and its bistability,” Appl. Phys. Lett. 80(3), 374–376 (2002).
[Crossref]

Y. Yi, M. Nakata, A. R. Martin, and N. A. Clark, “Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography,” Appl. Phys. Lett. 90(16), 163510 (2007).
[Crossref]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[Crossref]

C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram, “Multistable alignment states in nematic liquid crystal filled wells,” Appl. Phys. Lett. 90(11), 111913 (2007).
[Crossref]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[Crossref]

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[Crossref]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[Crossref]

J. Appl. Phys. (9)

H. Yokoyama and H. A. Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystalwall interface from director distortions at high fields,” J. Appl. Phys. 57(10), 4520–4526 (1985).
[Crossref]

X. Nie, R. Lu, H. Xianyu, X. T. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Azimuthal dependence of switching field strength for nematic liquid crystal bistability on patterned alignment layers,” J. Appl. Phys. 111(10), 103507 (2012).
[Crossref]

E.-K. Lee and J.-H. Kim, “Multistability of nematic liquid crystals realized on microscopic orientation patterns,” J. Appl. Phys. 102(3), 036102 (2007).
[Crossref]

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu, “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84(3), 1321–1324 (1998).
[Crossref]

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

Z. L. Xie and H. S. Kwok, “New bistable twisted nematic liquid crystal displays,” J. Appl. Phys. 84(1), 77–82 (1998).
[Crossref]

B. Wang and P. J. Bos, “Design optimized bistable twisted nematic liquid crystal display,” J. Appl. Phys. 90(2), 552–555 (2001).
[Crossref]

J. Inf. Disp. (1)

I. Dozov, D.-N. Stoenescu, S. Lanmarque-Forget, S. Joly, J.-C. Dubois, and P. Martinot-Lagarde, “Development of low anchoring strength liquid crystal mixtures for bistable nematic displays,” J. Inf. Disp. 6(3), 1–5 (2005).
[Crossref]

J. Phys. D Appl. Phys. (2)

C. Uche, S. J. Elston, and L. A. Parry-Jones, “Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures,” J. Phys. D Appl. Phys. 38(13), 2283–2291 (2005).
[Crossref]

C. Park, M.-K. Park, K. I. Joo, J.-S. Park, K.-W. Park, Y. Han, S.-W. Kang, and H.-R. Kim, “Liquid crystal anchoring utilizing surface topological effects of self-structured dual-groove patterns,” J. Phys. D Appl. Phys. 45(37), 375101 (2012).
[Crossref]

J. Soc. Inf. Disp. (1)

C.-Y. Lee, M.-C. Tseng, J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Bistable nano-structured photoalignment surface by nanoimprint lithography,” J. Soc. Inf. Disp. 23(4), 163–169 (2015).
[Crossref]

Jpn. J. Appl. Phys. (3)

S. Saito, T. Takahashi, T. Chiba, and S. Tsuchida, “Influence of azimuth anchoring on bistable properties of bistable nematic liquid crystal cells,” Jpn. J. Appl. Phys. 41(1), 3841–3845 (2002).
[Crossref]

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(8), 4434–4437 (1996).
[Crossref]

C. G. Jhun, C. P. Chen, S. L. Lee, J. I. Back, T. H. Yoon, and J. C. Kim, “Disclination velocity in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45(6A6R), 5063–5068 (2006).
[Crossref]

Liq. Cryst. (1)

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Surface nematic liquid crystal bistability on low-symmetry photoalignment micropatterns,” Liq. Cryst. 31(1), 31–36 (2009).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

D. W. Berreman, “Alignment of liquid crystals by grooved surface,” Mol. Cryst. Liq. Cryst. 23(3), 215–231 (1973).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

C. G. Jhun, K. Chen, K. Kim, U.-S. Jung, J.-H. Moon, S.-B. Kwon, J. H. Lee, and J. C. Kim, “Gray scale of bistable chiral splay nematic device in the splay transition,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 12–17 (2010).
[Crossref]

Nature (2)

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[Crossref] [PubMed]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[Crossref]

Opt. Express (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

J. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[Crossref] [PubMed]

S. H. Lee, G. D. Lee, T. H. Yoon, and J. C. Kim, “Effect of azimuthal anchoring strength on stability in a bistable chiral splay nematic liquid crystal device,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 041704 (2004).
[Crossref] [PubMed]

T. J. Spencer and C. M. Care, “Lattice Boltzmann scheme for modeling liquid-crystal dynamics: Zenithal bistable device in the presence of defect motion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061708 (2006).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

I. Dozov and Ph. Martinot-Langarde, “First-order breaking transition of tilted nematic anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7442–7446 (1998).
[Crossref]

Phys. Rev. Lett. (2)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[Crossref]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[Crossref] [PubMed]

SID Int. Symp. Digest Tech. Pap. (1)

E. L. Wood, G. P. Bryan-Brown, P. Brett, A. Graham, J. C. Jones, and J. R. Hughes, “11.2: Zenithal bistable device (ZBDTM) suitable for portable applications,” SID Int. Symp. Digest Tech. Pap. 31(1), 124–127 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the bistable liquid crystal modealigned to a topologically self-patterned dual-groove surface, with coexisting macro-groove and micro-groove structures. LC states can be switched between homogeneously planar (HP) and twisted nematic (TN) configurations using a pulsed driving field.
Fig. 2
Fig. 2 (a) The surface free energy density (fs) of dual-groove structures with g = 1 condition, as a function of the azimuthal angle (ϕ0) of the surface LC director, presented for azimuthal anchoring energies of WG = 10 µN/m and WG = 5 µN/m. (b) The potential energy barrier (ΔH) and the switching field (EC) of the bistable switching LC mode with respect to WG. ΔH and EC are co-plotted in the inset graph with respect to the log scaled WG.
Fig. 3
Fig. 3 (a) Total free energy density (FT) of the LC layer for different values of ϕ0 conditions, obtained after assuming that the vertical or planar LC alignment layer is the opposite bottom surface with respect to the dual-groove substrate (g = 1). (b) The ratio of ΔHTN to ΔHHP, and the absolute values of ΔHHP and ΔHTN as a function of ϕ0 of the bistable LC anchoring surface (g = 1). (c) Bistable degenerated easy axes of ϕTN and ϕHP for different values of WG when g = 1.
Fig. 4
Fig. 4 (a) Total free energy density (FT) of the LC layer for different d/p conditions, with respect to ϕ0. These values are obtained after considering the bulk elastic distortion energies induced by the opposite side of the LC alignment surface on the dual-grooved bistable LC anchoring surface. (b) Potential energy barriers of HP (ΔHHP) and TN (ΔHTN) states, as well as the difference between the potential energy barriers (ΔHHP-ΔHTN), for varying d/p.
Fig. 5
Fig. 5 (a) Schematic illustration of the fabrication procedures for the bistable LC anchoring surface: preparation of an elastomeric template using the self-patterned dual-groove structure followed by preparation of the topologically patterned LC alignment surface using a UV-assisted replica-molding process. (b) An atomic force microscope (AFM) image of the dual-groove structure, where the micro-grooves are self-structured on the macro-grooves. The direction of the micro-grooves is perpendicular to the macro-groove direction, as shown in the enlarged figure. (c) Cross-sectional surface profiles of the dual-groove structure measured along the A-A’, B-B’, and C-C’ lines of Fig. 5(b).
Fig. 6
Fig. 6 (a) Schematic diagram of the twisted LC cell for measuring the azimuthal LC anchoring energy of the macro-groove surface. (b) Optical setup for the azimuthal anchoring measurement. (c) Normalized light transmittance of the twisted LC cell measured by rotating the transmission axis of the analyzer with respect to the transmission axis of the input polarizer. (d) Schematic diagram of the bistable LC cell aligned with the homeotropic-planar LC geometry using the dual-groove surface and the non-rubbed homeotropic anchoring surface. (e,f) Polarized optical microscope (POM) images of the LC cell prepared with the bistable LC geometry shown in Fig. 6(d), measured under the crossed polarizers, when the LC cell is rotated (e) clockwise and (f) counterclockwise with respect to the polarizers, where the rotation angle is ± 45°.
Fig. 7
Fig. 7 Polarized microscope (POM) images of the bistable LC devices, prepared with the d/p LC bulk conditions of 1/6, 1/8, and 1/12 for the figure sets (a) and (a’), (b) and (b’), and (c) and (c’), respectively. The pulse shape of the in-plane field used for the bistable switching is presented for Fig. 7(a). Images of the initial states are obtained after thermal annealing at the isotropic LC temperature and cooling to room temperature, and before pulsed field switching. All LC textures are obtained without applying any electric field. The dark and bright areas represent the HP and TN states, respectively. The width and spacing of Al electrodes used for in-plane switching are 10 µm and 30 µm, respectively. (a), (b), and (c) are POM images of the initial LC textures with coexisting HP and TN states, and the HP state after uniformly switched by the x-axis electric field. (a’), (b’), and (c’) are the POM images of the initial LC textures and the TN state after uniformly switched by the y-axis electric field.
Fig. 8
Fig. 8 (a) The schematic structure of the bistable switching LC mode. POM images depicting, (b) the initial state with coexisting HP and TN states, (c) the HP state after switching by the pulsed field, Ex, applied by the in-plane electrodes on the top substrate, and (d) the TN state after switching by the pulsed field, Ey, applied by the in-plane electrodes on the bottom substrate.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

z= A M sin[ 2π λ M ( xcosϕysinϕ ) ]+ A m sin[ 2π λ m ( xsinϕycosϕ ) ],
F= 1 2 [ K 1 ( n ) 2 + K 2 ( n × n ) 2 + K 3 ( n ×× n ) 2 ( K 2 + K 24 )( n n + n ×× n ) ] dz,
f s = 1 4 K 3 A M 2 ( 2π λ M ) 3 { sin 2 ϕ 0 p 1 ( ϕ 0 ) [ sin 2 ϕ 0 + k 3 cos 2 ϕ 0 ( 2 k 3 p 1 ( ϕ 0 ) p 2 ( ϕ 0 ) cos 2 ϕ 0 sin 2 ϕ 0 ) ] + g cos 2 ϕ 0 q 1 ( ϕ 0 ) [ cos 2 ϕ 0 + k 3 sin 2 ϕ 0 ( 2 k 3 q 1 ( ϕ 0 ) q 2 ( ϕ 0 ) sin 2 ϕ 0 cos 2 ϕ 0 ) ] },
W G = 1 2 K 3 A M 2 ( 2π λ M ) 3 ( 1+ π K 3 λ M W p ) 1 = 1 2 K 3 A m 2 ( 2π λ m ) 3 ( 1+ π K 3 λ m W p ) 1 ,
W G =2 E c Δε K 2 ,
F T = K 2 2d ( ϕ 0 + π 4 ) 2 + f s ,
F T = K 2 2d ( ϕ 0 + π 4 d 2π p ) 2 + f s ,
W G = 2 K 2 Φ dsin2Φ

Metrics