Abstract

Manipulating free-space electron wave functions with laser fields can bring about new electron-optical elements for transmission electron microscopy (TEM). In particular, a Zernike phase plate would enable high-contrast TEM imaging of soft matter, leading to new opportunities in structural biology and materials science. A Zernike phase plate can be implemented using a tight, intense continuous laser focus that shifts the phase of the electron wave by the ponderomotive potential. Here, we use a near-concentric cavity to focus 7.5 kW of continuous-wave circulating laser power at 1064 nm into a 7 µm mode waist, achieving a record continuous laser intensity of 40 GW/cm2. Such parameters are sufficient to impart a phase shift of 1 rad to a 10 keV electron beam, or 0.16 rad to a 300 keV beam. Our numerical simulations confirm that the standing-wave phase shift profile imprinted on the electron wave by the intra-cavity field can serve as a nearly ideal Zernike phase plate.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave cavity ringdown spectroscopy applied to solids: properties of a Fabry-Perot cavity containing a transparent substrate

Akira Terasaki, Tamotsu Kondow, and Kazuhiro Egashira
J. Opt. Soc. Am. B 22(3) 675-686 (2005)

Single-beam, ponderomotive-optical trap for free electrons and neutral atoms

J. L. Chaloupka, Y. Fisher, T. J. Kessler, and D. D. Meyerhofer
Opt. Lett. 22(13) 1021-1023 (1997)

Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry–Perot ring-cavity premode cleaner

B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage
Opt. Lett. 23(21) 1704-1706 (1998)

References

  • View by:
  • |
  • |
  • |

  1. J. C. H. Spence, High-Resolution Electron Microscopy (Oxford University, 2013).
    [Crossref]
  2. G. Möllenstedt and H. Düker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Zeitschrift für Physik 145, 377–397 (1956).
    [Crossref]
  3. A. Tonomura, “Applications of electron holography,” Rev. Modern Phys. 59, 639–669 (1987).
    [Crossref]
  4. P. A. Midgley and R. E. Dunin-Borkowski, “Electron tomography and holography in materials science,” Nat. Mater. 8, 271–280 (2009).
    [Crossref] [PubMed]
  5. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
    [Crossref] [PubMed]
  6. V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, “Holographic Generation of Highly Twisted Electron Beams,” Phys. Rev. Lett. 114, 034801 (2015).
    [Crossref] [PubMed]
  7. J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467, 301–304 (2010).
    [Crossref] [PubMed]
  8. R. M. Glaeser, “Invited Review Article: Methods for imaging weak-phase objects in electron microscopy,” Rev. Sci. Instrum. 84, 111101 (2013).
    [Crossref] [PubMed]
  9. E. Jones, M. Becker, J. Luiten, and H. Batelaan, “Laser control of electron matter waves,” Laser Photonics Rev. 10, 214–229 (2016).
    [Crossref]
  10. W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
    [Crossref]
  11. P. Baum, D.-S. Yang, and A. H. Zewail, “4d Visualization of Transitional Structures in Phase Transformations by Electron Diffraction,” Science 318, 788–792 (2007).
    [Crossref] [PubMed]
  12. J. Breuer and P. Hommelhoff, “Laser-Based Acceleration of Nonrelativistic Electrons at a Dielectric Structure,” Phys. Rev. Lett. 111, 134803 (2013).
    [Crossref] [PubMed]
  13. A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015).
    [Crossref] [PubMed]
  14. A. Howie, “Photon interactions for electron microscopy applications,” Eur. Phys. J. Appl. Phys. 54, 33502 (2011).
    [Crossref]
  15. D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413, 142–143 (2001).
    [Crossref] [PubMed]
  16. D. L. Freimund and H. Batelaan, “Bragg Scattering of Free Electrons Using the Kapitza-Dirac Effect,” Phys. Rev. Lett. 89, 283602 (2002).
    [Crossref]
  17. J. Handali, P. Shakya, and B. Barwick, “Creating electron vortex beams with light,” Opt. Express 23, 5236–5243 (2015).
    [Crossref] [PubMed]
  18. H. Müller, J. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, “Design of an electron microscope phase plate using a focused continuous-wave laser,” New J. Phys. 12, 073011 (2010).
    [Crossref] [PubMed]
  19. E. Nogales, “The development of cryo-EM into a mainstream structural biology technique,” Nat. Methods 13, 24–27 (2016).
    [Crossref] [PubMed]
  20. R. M. Glaeser, “How good can cryo-EM become?” Nat. Methods 13, 28–32 (2016).
    [Crossref]
  21. E. Callaway, “The revolution will not be crystallized: a new method sweeps through structural biology,” Nature 525, 172–174 (2015).
    [Crossref] [PubMed]
  22. R. Glaeser, K. Downing, D. DeRosier, W. Chiu, and J. Frank, Electron Crystallography of Biological Macromolecules, 1st ed. (Oxford University, 2007).
  23. R. Henderson, “The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules,” Quarterly Rev. Biophys. 28, 171–193 (1995).
    [Crossref]
  24. S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
    [Crossref] [PubMed]
  25. R. Danev, B. Buijsse, M. Khoshouei, J. M. Plitzko, and W. Baumeister, “Volta potential phase plate for in-focus phase contrast transmission electron microscopy,” Proc. Natl. Acad. Sci. 111, 15635–15640 (2014).
    [Crossref] [PubMed]
  26. W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
    [Crossref] [PubMed]
  27. H. Batelaan, “Illuminating the Kapitza-Dirac effect with electron matter optics,” Rev. Mod. Phys. 79, 929–941 (2007).
    [Crossref]
  28. J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
    [Crossref] [PubMed]
  29. W. J. Huang, J. M. Zuo, B. Jiang, K. W. Kwon, and M. Shim, “Sub-ångström-resolution diffractive imaging of single nanocrystals,” Nat. Phys. 5, 129–133 (2009).
    [Crossref]
  30. L. S. Meng, J. K. Brasseur, and D. K. Neumann, “Damage threshold and surface distortion measurement for high-reflectance, low-loss mirrors to 100+ MW/cm2 cw laser intensity,” Opt. Express 13, 10085 (2005).
    [Crossref] [PubMed]
  31. K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Pérot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
    [Crossref]
  32. H. Carstens, N. Lilienfein, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tünnermann, J. Weitenberg, D. C. Yost, A. Alghamdi, Z. Alahmed, A. Azzeer, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Megawatt-scale average-power ultrashort pulses in an enhancement cavity,” Opt. Lett. 39, 2595 (2014).
    [Crossref] [PubMed]
  33. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
    [Crossref] [PubMed]
  34. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [Crossref]
  35. B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
    [Crossref]
  36. M. Khoshouei, M. Radjainia, W. Baumeister, and R. Danev, “Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate,” bioRxiv p. 087841 (2016).
  37. E. J. Kirkland, Advanced Computing in Electron Microscopy, 2nd ed. (Springer, 2010).
    [Crossref]
  38. J. S. Kavanaugh, W. F. Moo-Penn, and A. Arnone, “Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37 alpha-Glu-Thr 38 alpha) generates a 3(10)–>alpha bulge,” Biochemistry 32, 2509–2513 (1993).
    [Crossref] [PubMed]
  39. Z. Shang and F. J. Sigworth, “Hydration layer models for cryo-EM image simulation,” J. Structural Biol. 180, 10–16 (2012).
    [Crossref]
  40. Y. Cheng, “Single-Particle Cryo-EM at Crystallographic Resolution,” Cell 161, 450–457 (2015).
    [Crossref] [PubMed]
  41. A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
    [Crossref] [PubMed]
  42. P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
    [Crossref] [PubMed]
  43. M. Wolke, J. Klinner, H. Keßler, and A. Hemmerich, “Cavity Cooling Below the Recoil Limit,” Science 337, 75–78 (2012).
    [Crossref] [PubMed]
  44. A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
    [Crossref] [PubMed]
  45. P. D. Edmunds and P. F. Barker, “A deep optical cavity trap for atoms and molecules with rapid frequency and intensity modulation,” Rev. Sci. Instrum. 84, 083101 (2013).
    [Crossref] [PubMed]
  46. Y.-J. Chen, L. F. Gonçalves, and G. Raithel, “Measurement of Rb $5{P}_{3/2}$ scalar and tensor polarizabilities in a 1064-nm light field,” Phys. Rev. A 92, 060501 (2015).
    [Crossref]
  47. D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
    [Crossref]
  48. P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
    [Crossref] [PubMed]
  49. N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. 110, 14180–14185 (2013).
    [Crossref] [PubMed]

2016 (5)

E. Jones, M. Becker, J. Luiten, and H. Batelaan, “Laser control of electron matter waves,” Laser Photonics Rev. 10, 214–229 (2016).
[Crossref]

E. Nogales, “The development of cryo-EM into a mainstream structural biology technique,” Nat. Methods 13, 24–27 (2016).
[Crossref] [PubMed]

R. M. Glaeser, “How good can cryo-EM become?” Nat. Methods 13, 28–32 (2016).
[Crossref]

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

2015 (8)

Y. Cheng, “Single-Particle Cryo-EM at Crystallographic Resolution,” Cell 161, 450–457 (2015).
[Crossref] [PubMed]

Y.-J. Chen, L. F. Gonçalves, and G. Raithel, “Measurement of Rb $5{P}_{3/2}$ scalar and tensor polarizabilities in a 1064-nm light field,” Phys. Rev. A 92, 060501 (2015).
[Crossref]

E. Callaway, “The revolution will not be crystallized: a new method sweeps through structural biology,” Nature 525, 172–174 (2015).
[Crossref] [PubMed]

S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
[Crossref] [PubMed]

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, “Holographic Generation of Highly Twisted Electron Beams,” Phys. Rev. Lett. 114, 034801 (2015).
[Crossref] [PubMed]

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015).
[Crossref] [PubMed]

J. Handali, P. Shakya, and B. Barwick, “Creating electron vortex beams with light,” Opt. Express 23, 5236–5243 (2015).
[Crossref] [PubMed]

2014 (3)

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Pérot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

H. Carstens, N. Lilienfein, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tünnermann, J. Weitenberg, D. C. Yost, A. Alghamdi, Z. Alahmed, A. Azzeer, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Megawatt-scale average-power ultrashort pulses in an enhancement cavity,” Opt. Lett. 39, 2595 (2014).
[Crossref] [PubMed]

R. Danev, B. Buijsse, M. Khoshouei, J. M. Plitzko, and W. Baumeister, “Volta potential phase plate for in-focus phase contrast transmission electron microscopy,” Proc. Natl. Acad. Sci. 111, 15635–15640 (2014).
[Crossref] [PubMed]

2013 (6)

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

J. Breuer and P. Hommelhoff, “Laser-Based Acceleration of Nonrelativistic Electrons at a Dielectric Structure,” Phys. Rev. Lett. 111, 134803 (2013).
[Crossref] [PubMed]

R. M. Glaeser, “Invited Review Article: Methods for imaging weak-phase objects in electron microscopy,” Rev. Sci. Instrum. 84, 111101 (2013).
[Crossref] [PubMed]

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref] [PubMed]

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. 110, 14180–14185 (2013).
[Crossref] [PubMed]

P. D. Edmunds and P. F. Barker, “A deep optical cavity trap for atoms and molecules with rapid frequency and intensity modulation,” Rev. Sci. Instrum. 84, 083101 (2013).
[Crossref] [PubMed]

2012 (4)

Z. Shang and F. J. Sigworth, “Hydration layer models for cryo-EM image simulation,” J. Structural Biol. 180, 10–16 (2012).
[Crossref]

M. Wolke, J. Klinner, H. Keßler, and A. Hemmerich, “Cavity Cooling Below the Recoil Limit,” Science 337, 75–78 (2012).
[Crossref] [PubMed]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[Crossref] [PubMed]

2011 (3)

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
[Crossref]

A. Howie, “Photon interactions for electron microscopy applications,” Eur. Phys. J. Appl. Phys. 54, 33502 (2011).
[Crossref]

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
[Crossref] [PubMed]

2010 (3)

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467, 301–304 (2010).
[Crossref] [PubMed]

H. Müller, J. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, “Design of an electron microscope phase plate using a focused continuous-wave laser,” New J. Phys. 12, 073011 (2010).
[Crossref] [PubMed]

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

2009 (2)

P. A. Midgley and R. E. Dunin-Borkowski, “Electron tomography and holography in materials science,” Nat. Mater. 8, 271–280 (2009).
[Crossref] [PubMed]

W. J. Huang, J. M. Zuo, B. Jiang, K. W. Kwon, and M. Shim, “Sub-ångström-resolution diffractive imaging of single nanocrystals,” Nat. Phys. 5, 129–133 (2009).
[Crossref]

2007 (2)

H. Batelaan, “Illuminating the Kapitza-Dirac effect with electron matter optics,” Rev. Mod. Phys. 79, 929–941 (2007).
[Crossref]

P. Baum, D.-S. Yang, and A. H. Zewail, “4d Visualization of Transitional Structures in Phase Transformations by Electron Diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

2005 (2)

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

L. S. Meng, J. K. Brasseur, and D. K. Neumann, “Damage threshold and surface distortion measurement for high-reflectance, low-loss mirrors to 100+ MW/cm2 cw laser intensity,” Opt. Express 13, 10085 (2005).
[Crossref] [PubMed]

2002 (1)

D. L. Freimund and H. Batelaan, “Bragg Scattering of Free Electrons Using the Kapitza-Dirac Effect,” Phys. Rev. Lett. 89, 283602 (2002).
[Crossref]

2001 (1)

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413, 142–143 (2001).
[Crossref] [PubMed]

2000 (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

1995 (1)

R. Henderson, “The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules,” Quarterly Rev. Biophys. 28, 171–193 (1995).
[Crossref]

1993 (1)

J. S. Kavanaugh, W. F. Moo-Penn, and A. Arnone, “Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37 alpha-Glu-Thr 38 alpha) generates a 3(10)–>alpha bulge,” Biochemistry 32, 2509–2513 (1993).
[Crossref] [PubMed]

1987 (1)

A. Tonomura, “Applications of electron holography,” Rev. Modern Phys. 59, 639–669 (1987).
[Crossref]

1956 (1)

G. Möllenstedt and H. Düker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Zeitschrift für Physik 145, 377–397 (1956).
[Crossref]

Aflatooni, K.

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413, 142–143 (2001).
[Crossref] [PubMed]

Agrawal, A.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
[Crossref] [PubMed]

Alahmed, Z.

Alghamdi, A.

Alivisatos, A. P.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Allison, T. K.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[Crossref] [PubMed]

Anderson, I. M.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
[Crossref] [PubMed]

Apolonski, A.

Arndt, M.

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref] [PubMed]

Arnone, A.

J. S. Kavanaugh, W. F. Moo-Penn, and A. Arnone, “Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37 alpha-Glu-Thr 38 alpha) generates a 3(10)–>alpha bulge,” Biochemistry 32, 2509–2513 (1993).
[Crossref] [PubMed]

Asano, S.

S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
[Crossref] [PubMed]

Asenbaum, P.

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref] [PubMed]

Aspelmeyer, M.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. 110, 14180–14185 (2013).
[Crossref] [PubMed]

Aufderheide, A.

S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
[Crossref] [PubMed]

Azzeer, A.

Banerjee, S.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Barker, P. F.

P. D. Edmunds and P. F. Barker, “A deep optical cavity trap for atoms and molecules with rapid frequency and intensity modulation,” Rev. Sci. Instrum. 84, 083101 (2013).
[Crossref] [PubMed]

Bartesaghi, A.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Barwick, B.

Batelaan, H.

E. Jones, M. Becker, J. Luiten, and H. Batelaan, “Laser control of electron matter waves,” Laser Photonics Rev. 10, 214–229 (2016).
[Crossref]

H. Batelaan, “Illuminating the Kapitza-Dirac effect with electron matter optics,” Rev. Mod. Phys. 79, 929–941 (2007).
[Crossref]

D. L. Freimund and H. Batelaan, “Bragg Scattering of Free Electrons Using the Kapitza-Dirac Effect,” Phys. Rev. Lett. 89, 283602 (2002).
[Crossref]

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413, 142–143 (2001).
[Crossref] [PubMed]

Baum, P.

P. Baum, D.-S. Yang, and A. H. Zewail, “4d Visualization of Transitional Structures in Phase Transformations by Electron Diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

Baumeister, W.

S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
[Crossref] [PubMed]

R. Danev, B. Buijsse, M. Khoshouei, J. M. Plitzko, and W. Baumeister, “Volta potential phase plate for in-focus phase contrast transmission electron microscopy,” Proc. Natl. Acad. Sci. 111, 15635–15640 (2014).
[Crossref] [PubMed]

M. Khoshouei, M. Radjainia, W. Baumeister, and R. Danev, “Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate,” bioRxiv p. 087841 (2016).

Beck, F.

S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
[Crossref] [PubMed]

Becker, M.

E. Jones, M. Becker, J. Luiten, and H. Batelaan, “Laser control of electron matter waves,” Laser Photonics Rev. 10, 214–229 (2016).
[Crossref]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Berggren, K. K.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Blaser, F.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. 110, 14180–14185 (2013).
[Crossref] [PubMed]

Blatt, R.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Boxer, M. B.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Boyd, R. W.

V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, “Holographic Generation of Highly Twisted Electron Beams,” Phys. Rev. Lett. 114, 034801 (2015).
[Crossref] [PubMed]

Brandstätter, B.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Brasseur, J. K.

Breuer, J.

J. Breuer and P. Hommelhoff, “Laser-Based Acceleration of Nonrelativistic Electrons at a Dielectric Structure,” Phys. Rev. Lett. 111, 134803 (2013).
[Crossref] [PubMed]

Buijsse, B.

R. Danev, B. Buijsse, M. Khoshouei, J. M. Plitzko, and W. Baumeister, “Volta potential phase plate for in-focus phase contrast transmission electron microscopy,” Proc. Natl. Acad. Sci. 111, 15635–15640 (2014).
[Crossref] [PubMed]

Callaway, E.

E. Callaway, “The revolution will not be crystallized: a new method sweeps through structural biology,” Nature 525, 172–174 (2015).
[Crossref] [PubMed]

Campbell, G. H.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Carstens, H.

Casabone, B.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Chang, D. E.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

Chen, Q.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Chen, Y.-J.

Y.-J. Chen, L. F. Gonçalves, and G. Raithel, “Measurement of Rb $5{P}_{3/2}$ scalar and tensor polarizabilities in a 1064-nm light field,” Phys. Rev. A 92, 060501 (2015).
[Crossref]

Cheng, Y.

Y. Cheng, “Single-Particle Cryo-EM at Crystallographic Resolution,” Cell 161, 450–457 (2015).
[Crossref] [PubMed]

Chiu, W.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

R. Glaeser, K. Downing, D. DeRosier, W. Chiu, and J. Frank, Electron Crystallography of Biological Macromolecules, 1st ed. (Oxford University, 2007).

Cingöz, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[Crossref] [PubMed]

Dai, W.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Danev, R.

S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
[Crossref] [PubMed]

R. Danev, B. Buijsse, M. Khoshouei, J. M. Plitzko, and W. Baumeister, “Volta potential phase plate for in-focus phase contrast transmission electron microscopy,” Proc. Natl. Acad. Sci. 111, 15635–15640 (2014).
[Crossref] [PubMed]

H. Müller, J. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, “Design of an electron microscope phase plate using a focused continuous-wave laser,” New J. Phys. 12, 073011 (2010).
[Crossref] [PubMed]

M. Khoshouei, M. Radjainia, W. Baumeister, and R. Danev, “Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate,” bioRxiv p. 087841 (2016).

Davis, M. I.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Delic, U.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. 110, 14180–14185 (2013).
[Crossref] [PubMed]

DeRosier, D.

R. Glaeser, K. Downing, D. DeRosier, W. Chiu, and J. Frank, Electron Crystallography of Biological Macromolecules, 1st ed. (Oxford University, 2007).

Downing, K.

R. Glaeser, K. Downing, D. DeRosier, W. Chiu, and J. Frank, Electron Crystallography of Biological Macromolecules, 1st ed. (Oxford University, 2007).

Düker, H.

G. Möllenstedt and H. Düker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Zeitschrift für Physik 145, 377–397 (1956).
[Crossref]

Dunin-Borkowski, R. E.

P. A. Midgley and R. E. Dunin-Borkowski, “Electron tomography and holography in materials science,” Nat. Mater. 8, 271–280 (2009).
[Crossref] [PubMed]

Durak, K.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Pérot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Earl, L.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Echternkamp, K. E.

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015).
[Crossref] [PubMed]

Edmunds, P. D.

P. D. Edmunds and P. F. Barker, “A deep optical cavity trap for atoms and molecules with rapid frequency and intensity modulation,” Rev. Sci. Instrum. 84, 083101 (2013).
[Crossref] [PubMed]

Eidam, T.

Elmlund, H.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Ercius, P.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Falconieri, V.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Feist, A.

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015).
[Crossref] [PubMed]

Fermann, M. E.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[Crossref] [PubMed]

Fill, E.

Flanagan, J.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Förster, F.

S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
[Crossref] [PubMed]

Frabboni, S.

V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, “Holographic Generation of Highly Twisted Electron Beams,” Phys. Rev. Lett. 114, 034801 (2015).
[Crossref] [PubMed]

Frank, A.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Frank, J.

R. Glaeser, K. Downing, D. DeRosier, W. Chiu, and J. Frank, Electron Crystallography of Biological Macromolecules, 1st ed. (Oxford University, 2007).

Freimund, D. L.

D. L. Freimund and H. Batelaan, “Bragg Scattering of Free Electrons Using the Kapitza-Dirac Effect,” Phys. Rev. Lett. 89, 283602 (2002).
[Crossref]

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413, 142–143 (2001).
[Crossref] [PubMed]

Fu, C.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Fukuda, Y.

S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
[Crossref] [PubMed]

Gazzadi, G. C.

V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, “Holographic Generation of Highly Twisted Electron Beams,” Phys. Rev. Lett. 114, 034801 (2015).
[Crossref] [PubMed]

Glaeser, R.

R. Glaeser, K. Downing, D. DeRosier, W. Chiu, and J. Frank, Electron Crystallography of Biological Macromolecules, 1st ed. (Oxford University, 2007).

Glaeser, R. M.

R. M. Glaeser, “How good can cryo-EM become?” Nat. Methods 13, 28–32 (2016).
[Crossref]

R. M. Glaeser, “Invited Review Article: Methods for imaging weak-phase objects in electron microscopy,” Rev. Sci. Instrum. 84, 111101 (2013).
[Crossref] [PubMed]

H. Müller, J. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, “Design of an electron microscope phase plate using a focused continuous-wave laser,” New J. Phys. 12, 073011 (2010).
[Crossref] [PubMed]

Gonçalves, L. F.

Y.-J. Chen, L. F. Gonçalves, and G. Raithel, “Measurement of Rb $5{P}_{3/2}$ scalar and tensor polarizabilities in a 1064-nm light field,” Phys. Rev. A 92, 060501 (2015).
[Crossref]

Grass, D.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. 110, 14180–14185 (2013).
[Crossref] [PubMed]

Grillo, V.

V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, “Holographic Generation of Highly Twisted Electron Beams,” Phys. Rev. Lett. 114, 034801 (2015).
[Crossref] [PubMed]

Haase-Pettingell, C.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Hammer, J.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Han, S. H.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Handali, J.

Hartl, I.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[Crossref] [PubMed]

He, Y.

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
[Crossref]

Hemmerich, A.

M. Wolke, J. Klinner, H. Keßler, and A. Hemmerich, “Cavity Cooling Below the Recoil Limit,” Science 337, 75–78 (2012).
[Crossref] [PubMed]

Henderson, R.

R. Henderson, “The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules,” Quarterly Rev. Biophys. 28, 171–193 (1995).
[Crossref]

Herzing, A. A.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
[Crossref] [PubMed]

Hobbs, R. G.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Holzberger, S.

Hommelhoff, P.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

J. Breuer and P. Hommelhoff, “Laser-Based Acceleration of Nonrelativistic Electrons at a Dielectric Structure,” Phys. Rev. Lett. 111, 134803 (2013).
[Crossref] [PubMed]

Howie, A.

A. Howie, “Photon interactions for electron microscopy applications,” Eur. Phys. J. Appl. Phys. 54, 33502 (2011).
[Crossref]

Huang, W. J.

W. J. Huang, J. M. Zuo, B. Jiang, K. W. Kwon, and M. Shim, “Sub-ångström-resolution diffractive imaging of single nanocrystals,” Nat. Phys. 5, 129–133 (2009).
[Crossref]

Jiang, B.

W. J. Huang, J. M. Zuo, B. Jiang, K. W. Kwon, and M. Shim, “Sub-ångström-resolution diffractive imaging of single nanocrystals,” Nat. Phys. 5, 129–133 (2009).
[Crossref]

Jin, J.

H. Müller, J. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, “Design of an electron microscope phase plate using a focused continuous-wave laser,” New J. Phys. 12, 073011 (2010).
[Crossref] [PubMed]

Jocher, C.

Jones, E.

E. Jones, M. Becker, J. Luiten, and H. Batelaan, “Laser control of electron matter waves,” Laser Photonics Rev. 10, 214–229 (2016).
[Crossref]

Juffmann, T.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Kaltenbaek, R.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. 110, 14180–14185 (2013).
[Crossref] [PubMed]

Karimi, E.

V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, “Holographic Generation of Highly Twisted Electron Beams,” Phys. Rev. Lett. 114, 034801 (2015).
[Crossref] [PubMed]

Kasevich, M. A.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Kavanaugh, J. S.

J. S. Kavanaugh, W. F. Moo-Penn, and A. Arnone, “Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37 alpha-Glu-Thr 38 alpha) generates a 3(10)–>alpha bulge,” Biochemistry 32, 2509–2513 (1993).
[Crossref] [PubMed]

Keßler, H.

M. Wolke, J. Klinner, H. Keßler, and A. Hemmerich, “Cavity Cooling Below the Recoil Limit,” Science 337, 75–78 (2012).
[Crossref] [PubMed]

Khant, H. A.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Khoshouei, M.

R. Danev, B. Buijsse, M. Khoshouei, J. M. Plitzko, and W. Baumeister, “Volta potential phase plate for in-focus phase contrast transmission electron microscopy,” Proc. Natl. Acad. Sci. 111, 15635–15640 (2014).
[Crossref] [PubMed]

M. Khoshouei, M. Radjainia, W. Baumeister, and R. Danev, “Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate,” bioRxiv p. 087841 (2016).

Kiesel, N.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. 110, 14180–14185 (2013).
[Crossref] [PubMed]

Kim, C.-S.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Kim, K.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Kimble, H. J.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

King, J. A.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

King, W. E.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Kirkland, E. J.

E. J. Kirkland, Advanced Computing in Electron Microscopy, 2nd ed. (Springer, 2010).
[Crossref]

Klinner, J.

M. Wolke, J. Klinner, H. Keßler, and A. Hemmerich, “Cavity Cooling Below the Recoil Limit,” Science 337, 75–78 (2012).
[Crossref] [PubMed]

Klopfer, B.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Kohstall, C.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Krausz, F.

Kruit, P.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Kuhn, S.

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref] [PubMed]

Kurtsiefer, C.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Pérot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Kwon, K. W.

W. J. Huang, J. M. Zuo, B. Jiang, K. W. Kwon, and M. Shim, “Sub-ångström-resolution diffractive imaging of single nanocrystals,” Nat. Phys. 5, 129–133 (2009).
[Crossref]

Leong, V.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Pérot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Lezec, H. J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
[Crossref] [PubMed]

Lilienfein, N.

Limmer, D. T.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Limpert, J.

Liu, X.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Ludtke, S. J.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Luiten, J.

E. Jones, M. Becker, J. Luiten, and H. Batelaan, “Laser control of electron matter waves,” Laser Photonics Rev. 10, 214–229 (2016).
[Crossref]

Mafakheri, E.

V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, “Holographic Generation of Highly Twisted Electron Beams,” Phys. Rev. Lett. 114, 034801 (2015).
[Crossref] [PubMed]

Manfrinato, V. R.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

McClelland, J. J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
[Crossref] [PubMed]

McMorran, B. J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
[Crossref] [PubMed]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Meng, L. S.

Merk, A.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Midgley, P. A.

P. A. Midgley and R. E. Dunin-Borkowski, “Electron tomography and holography in materials science,” Nat. Mater. 8, 271–280 (2009).
[Crossref] [PubMed]

Milne, J. S.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Möllenstedt, G.

G. Möllenstedt and H. Düker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Zeitschrift für Physik 145, 377–397 (1956).
[Crossref]

Monz, T.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Moo-Penn, W. F.

J. S. Kavanaugh, W. F. Moo-Penn, and A. Arnone, “Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37 alpha-Glu-Thr 38 alpha) generates a 3(10)–>alpha bulge,” Biochemistry 32, 2509–2513 (1993).
[Crossref] [PubMed]

Müller, H.

H. Müller, J. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, “Design of an electron microscope phase plate using a focused continuous-wave laser,” New J. Phys. 12, 073011 (2010).
[Crossref] [PubMed]

Nagayama, K.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Neumann, D. K.

Nguyen, C. H.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Pérot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Nimmrichter, S.

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref] [PubMed]

Nogales, E.

E. Nogales, “The development of cryo-EM into a mainstream structural biology technique,” Nat. Methods 13, 24–27 (2016).
[Crossref] [PubMed]

Northup, T. E.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Orr, B. J.

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
[Crossref]

Padmore, H.

H. Müller, J. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, “Design of an electron microscope phase plate using a focused continuous-wave laser,” New J. Phys. 12, 073011 (2010).
[Crossref] [PubMed]

Painter, O.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

Papp, S. B.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

Park, J.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Piret, J.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Plitzko, J. M.

R. Danev, B. Buijsse, M. Khoshouei, J. M. Plitzko, and W. Baumeister, “Volta potential phase plate for in-focus phase contrast transmission electron microscopy,” Proc. Natl. Acad. Sci. 111, 15635–15640 (2014).
[Crossref] [PubMed]

Pragani, R.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Pupeza, I.

Radjainia, M.

M. Khoshouei, M. Radjainia, W. Baumeister, and R. Danev, “Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate,” bioRxiv p. 087841 (2016).

Raithel, G.

Y.-J. Chen, L. F. Gonçalves, and G. Raithel, “Measurement of Rb $5{P}_{3/2}$ scalar and tensor polarizabilities in a 1064-nm light field,” Phys. Rev. A 92, 060501 (2015).
[Crossref]

Rao, P.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Raytcheva, D.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Reed, B.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Regal, C. A.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

Rochat, R. H.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Ropers, C.

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015).
[Crossref] [PubMed]

Ruehl, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[Crossref] [PubMed]

Schäfer, S.

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015).
[Crossref] [PubMed]

Schattschneider, P.

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467, 301–304 (2010).
[Crossref] [PubMed]

Schauss, J.

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015).
[Crossref] [PubMed]

Schindler, P.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Schmerge, J. F.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Schmid, M. F.

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

Schmidt, P. O.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Sezer, U.

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref] [PubMed]

Shakya, P.

Shang, Z.

Z. Shang and F. J. Sigworth, “Hydration layer models for cryo-EM image simulation,” J. Structural Biol. 180, 10–16 (2012).
[Crossref]

Shim, M.

W. J. Huang, J. M. Zuo, B. Jiang, K. W. Kwon, and M. Shim, “Sub-ångström-resolution diffractive imaging of single nanocrystals,” Nat. Phys. 5, 129–133 (2009).
[Crossref]

Sigworth, F. J.

Z. Shang and F. J. Sigworth, “Hydration layer models for cryo-EM image simulation,” J. Structural Biol. 180, 10–16 (2012).
[Crossref]

Siwick, B. J.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Spence, J.

H. Müller, J. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, “Design of an electron microscope phase plate using a focused continuous-wave laser,” New J. Phys. 12, 073011 (2010).
[Crossref] [PubMed]

Spence, J. C. H.

J. C. H. Spence, High-Resolution Electron Microscopy (Oxford University, 2013).
[Crossref]

Straupe, S.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Pérot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Stuart, B. C.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Stute, A.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Subramaniam, S.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Thomas, S.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Tian, H.

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467, 301–304 (2010).
[Crossref] [PubMed]

Tonomura, A.

A. Tonomura, “Applications of electron holography,” Rev. Modern Phys. 59, 639–669 (1987).
[Crossref]

Tünnermann, A.

Unguris, J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
[Crossref] [PubMed]

Verbeeck, J.

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467, 301–304 (2010).
[Crossref] [PubMed]

Weber, P.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Weber, P. M.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Weitenberg, J.

Weitz, D. A.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Wilson, D. J.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

Wolke, M.

M. Wolke, J. Klinner, H. Keßler, and A. Hemmerich, “Cavity Cooling Below the Recoil Limit,” Science 337, 75–78 (2012).
[Crossref] [PubMed]

Yalunin, S. V.

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015).
[Crossref] [PubMed]

Yang, D.-S.

P. Baum, D.-S. Yang, and A. H. Zewail, “4d Visualization of Transitional Structures in Phase Transformations by Electron Diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

Yang, Y.

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Ye, J.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[Crossref] [PubMed]

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

Yost, D. C.

Yuk, J. M.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Zettl, A.

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

Zewail, A. H.

P. Baum, D.-S. Yang, and A. H. Zewail, “4d Visualization of Transitional Structures in Phase Transformations by Electron Diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

Zoller, P.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

Zuo, J. M.

W. J. Huang, J. M. Zuo, B. Jiang, K. W. Kwon, and M. Shim, “Sub-ångström-resolution diffractive imaging of single nanocrystals,” Nat. Phys. 5, 129–133 (2009).
[Crossref]

Biochemistry (1)

J. S. Kavanaugh, W. F. Moo-Penn, and A. Arnone, “Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37 alpha-Glu-Thr 38 alpha) generates a 3(10)–>alpha bulge,” Biochemistry 32, 2509–2513 (1993).
[Crossref] [PubMed]

Cell (2)

Y. Cheng, “Single-Particle Cryo-EM at Crystallographic Resolution,” Cell 161, 450–457 (2015).
[Crossref] [PubMed]

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. Earl, J. S. Milne, and S. Subramaniam, “Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell 165, 1698–1707 (2016).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

A. Howie, “Photon interactions for electron microscopy applications,” Eur. Phys. J. Appl. Phys. 54, 33502 (2011).
[Crossref]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

J. Appl. Phys. (1)

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

J. Structural Biol. (1)

Z. Shang and F. J. Sigworth, “Hydration layer models for cryo-EM image simulation,” J. Structural Biol. 180, 10–16 (2012).
[Crossref]

Laser Photonics Rev. (1)

E. Jones, M. Becker, J. Luiten, and H. Batelaan, “Laser control of electron matter waves,” Laser Photonics Rev. 10, 214–229 (2016).
[Crossref]

Nat. Commun. (1)

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

P. A. Midgley and R. E. Dunin-Borkowski, “Electron tomography and holography in materials science,” Nat. Mater. 8, 271–280 (2009).
[Crossref] [PubMed]

Nat. Methods (2)

E. Nogales, “The development of cryo-EM into a mainstream structural biology technique,” Nat. Methods 13, 24–27 (2016).
[Crossref] [PubMed]

R. M. Glaeser, “How good can cryo-EM become?” Nat. Methods 13, 28–32 (2016).
[Crossref]

Nat. Phys. (1)

W. J. Huang, J. M. Zuo, B. Jiang, K. W. Kwon, and M. Shim, “Sub-ångström-resolution diffractive imaging of single nanocrystals,” Nat. Phys. 5, 129–133 (2009).
[Crossref]

Nature (7)

W. Dai, C. Fu, D. Raytcheva, J. Flanagan, H. A. Khant, X. Liu, R. H. Rochat, C. Haase-Pettingell, J. Piret, S. J. Ludtke, K. Nagayama, M. F. Schmid, J. A. King, and W. Chiu, “Visualizing virus assembly intermediates inside marine cyanobacteria,” Nature 502, 707–710 (2013).
[Crossref] [PubMed]

E. Callaway, “The revolution will not be crystallized: a new method sweeps through structural biology,” Nature 525, 172–174 (2015).
[Crossref] [PubMed]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467, 301–304 (2010).
[Crossref] [PubMed]

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413, 142–143 (2001).
[Crossref] [PubMed]

A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[Crossref] [PubMed]

New J. Phys. (2)

H. Müller, J. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, “Design of an electron microscope phase plate using a focused continuous-wave laser,” New J. Phys. 12, 073011 (2010).
[Crossref] [PubMed]

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Pérot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

Y.-J. Chen, L. F. Gonçalves, and G. Raithel, “Measurement of Rb $5{P}_{3/2}$ scalar and tensor polarizabilities in a 1064-nm light field,” Phys. Rev. A 92, 060501 (2015).
[Crossref]

Phys. Rev. Lett. (3)

D. L. Freimund and H. Batelaan, “Bragg Scattering of Free Electrons Using the Kapitza-Dirac Effect,” Phys. Rev. Lett. 89, 283602 (2002).
[Crossref]

J. Breuer and P. Hommelhoff, “Laser-Based Acceleration of Nonrelativistic Electrons at a Dielectric Structure,” Phys. Rev. Lett. 111, 134803 (2013).
[Crossref] [PubMed]

V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, “Holographic Generation of Highly Twisted Electron Beams,” Phys. Rev. Lett. 114, 034801 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (3)

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity optomechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. 107, 1005–1010 (2010).
[Crossref]

R. Danev, B. Buijsse, M. Khoshouei, J. M. Plitzko, and W. Baumeister, “Volta potential phase plate for in-focus phase contrast transmission electron microscopy,” Proc. Natl. Acad. Sci. 111, 15635–15640 (2014).
[Crossref] [PubMed]

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. 110, 14180–14185 (2013).
[Crossref] [PubMed]

Quarterly Rev. Biophys. (1)

R. Henderson, “The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules,” Quarterly Rev. Biophys. 28, 171–193 (1995).
[Crossref]

Rev. Mod. Phys. (1)

H. Batelaan, “Illuminating the Kapitza-Dirac effect with electron matter optics,” Rev. Mod. Phys. 79, 929–941 (2007).
[Crossref]

Rev. Modern Phys. (1)

A. Tonomura, “Applications of electron holography,” Rev. Modern Phys. 59, 639–669 (1987).
[Crossref]

Rev. Sci. Instrum. (2)

R. M. Glaeser, “Invited Review Article: Methods for imaging weak-phase objects in electron microscopy,” Rev. Sci. Instrum. 84, 111101 (2013).
[Crossref] [PubMed]

P. D. Edmunds and P. F. Barker, “A deep optical cavity trap for atoms and molecules with rapid frequency and intensity modulation,” Rev. Sci. Instrum. 84, 083101 (2013).
[Crossref] [PubMed]

Science (5)

M. Wolke, J. Klinner, H. Keßler, and A. Hemmerich, “Cavity Cooling Below the Recoil Limit,” Science 337, 75–78 (2012).
[Crossref] [PubMed]

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron Vortex Beams with High Quanta of Orbital Angular Momentum,” Science 331, 192–195 (2011).
[Crossref] [PubMed]

P. Baum, D.-S. Yang, and A. H. Zewail, “4d Visualization of Transitional Structures in Phase Transformations by Electron Diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, “3d structure of individual nanocrystals in solution by electron microscopy,” Science 349, 290–295 (2015).
[Crossref] [PubMed]

S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Förster, R. Danev, and W. Baumeister, “A molecular census of 26s proteasomes in intact neurons,” Science 347, 439–442 (2015).
[Crossref] [PubMed]

Ultramicroscopy (1)

P. Kruit, R. G. Hobbs, C.-S. Kim, Y. Yang, V. R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M. A. Kasevich, P. Hommelhoff, and K. K. Berggren, “Designs for a quantum electron microscope,” Ultramicroscopy 164, 31–45 (2016).
[Crossref] [PubMed]

Zeitschrift für Physik (1)

G. Möllenstedt and H. Düker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Zeitschrift für Physik 145, 377–397 (1956).
[Crossref]

Other (4)

J. C. H. Spence, High-Resolution Electron Microscopy (Oxford University, 2013).
[Crossref]

M. Khoshouei, M. Radjainia, W. Baumeister, and R. Danev, “Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate,” bioRxiv p. 087841 (2016).

E. J. Kirkland, Advanced Computing in Electron Microscopy, 2nd ed. (Springer, 2010).
[Crossref]

R. Glaeser, K. Downing, D. DeRosier, W. Chiu, and J. Frank, Electron Crystallography of Biological Macromolecules, 1st ed. (Oxford University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup. ECDL = external cavity diode laser, FA = fiber amplifier, FC = fiber coupler, PDH PD = Pound-Drever-Hall lock photodiode, FI = Faraday isolator, CL = coupling lens, CM = cavity mirror, BS = beamsplitter, FPD = fast photodiode, DA = digital data acquisition.
Fig. 2
Fig. 2 Axes: The cavity ring-down profile (red), and fit to the model described by Eq. e1 (black). The fit corresponds to a cavity mirror transmission-plus-loss of 137.9 ± 0.4 ppm. Inset: The mode for which the displayed CRD profile was measured. Fringes are an imaging artifact due to interference from the camera’s protective window.
Fig. 3
Fig. 3 Intra-cavity circulating power as a function of input power. The gray region represents the 68% confidence interval. The circulating power is determined via the measurement of the amplification factor M = (Tcav + 1 − Rcav)/2(T + L). Here, Tcav was monitored as a function of input power by simultaneously measuring the input power (using a calibrated partially-reflective window) and the transmitted power. Rcav was measured once at low power.
Fig. 4
Fig. 4 Modeling of TEM images of a hemoglobin molecule with a cavity-based ponderomotive phase plate: (a) ribbon plot of the hemoglobin molecule; (b) a TEM image of the molecule embedded in 30 nm of vitreous ice, electron energy 300 keV, underfocus 1 µm, dose 20 e2; (c) in-focus phase contrast image with a laser-based phase plate, same conditions; (d) an image of the same molecule with the cavity-based phase plate, in focus and without noise; (e) similar image with an ‘ideal’ phase plate; (f) the difference between (d) and (e), shown with enhanced contrast for visibility; (g) a hemoglobin image (left part of the panel) and a first-order weak ghost image appearing on the right; (h) the ghost image shown with enhanced contrast. The limits of the gray-scale map are shown in the corner of each image. All scale bars are 2nm. The cavity numerical aperture in the model is N A = 0.05, in agreement with the experimentally demonstrated parameters. The model assumes that the intra-cavity power is scaled to achieve full π 2 retardation at maximum, which requires a roughly tenfold further increase of optical power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 8 π α β γ P m c ω 2 w ,
P ( t ) | d ω e i ω t [ e i ω L / c 1 e 2 i ω L / c ] [ e i ω 2 / 2 η ] | 2
T c a v = | Q | 2 ( T T + L ) 2 , R c a v = 1 2 | Q | 2 T T + L + T c a v

Metrics