Abstract

In this work we present an Autocorrelation z-scan technique to measure, simultaneously, the spatial and temporal distribution of femtosecond pulses near the focal region of lenses. A second-order collinear autocorrelator is implemented before the lens under test to estimate the pulse width. Signals are obtained by translating a Two Photon Absorption (TPA) sensor along the optical axis and by measuring the second-order autocorrelation trace at each position z. The DC signal, which is typically not considered important, is taken into account since we have found that this signal provides relevant information. Experimental results are presented for different lenses and input wavefronts.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of DC two-photon absorption signal offset and amplitude of the intensity autocorrelation in the focusing of femtosecond pulses

Catalina Ramírez-Guerra, Martha Rosete-Aguilar, and Jesús Garduño-Mejía
Appl. Opt. 59(6) 1519-1523 (2020)

Gauss-Legendre quadrature method used to evaluate the spatio-temporal intensity of ultrashort pulses in the focal region of lenses

L. García-Martínez, M. Rosete-Aguilar, and J. Garduño-Mejia
Appl. Opt. 51(3) 306-315 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
    [Crossref]
  3. E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
    [Crossref]
  4. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
    [Crossref]
  5. K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
    [Crossref]
  6. M. Rutkauskas, D.T. Reid, J. Garduño-Mejía, M. Rosete-Aguilar, “Time-domain measurements reveal spatial aberrations in a sub-surface two-photon microscope,” accepted for publication in Appl. Opt., (2017).
  7. Y. Kim, P. Lu, T. D. Milster, and K. Kieu, “Hyper-numerical aperture (NA = 2.8) microscope using λ = 1.56 µm femtosecond source for multi-photon imaging,” Biomed. Opt. Express 4(10), 1786–1794 (2013).
    [Crossref] [PubMed]
  8. M. Kempe and W. Rudolph, “Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses,” Opt. Lett. 18(2), 137–139 (1993).
    [Crossref] [PubMed]
  9. Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun. 94(4), 249–258 (1992).
    [Crossref]
  10. W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, and M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt. Lett. 31(19), 2927–2929 (2006).
    [Crossref] [PubMed]
  11. P. Castro-Marín, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, D. T. Reid, C. Farrell, and G. E. Sandoval-Romero, “Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems,” Proc. SPIE 9953, 99530Q (2016).
    [Crossref]
  12. P. Castro-Marín, G. Castro-Olvera, C. Ruíz, J. Garduño-Mejía, M. Rosete-Aguilar and N.C. Bruce, “Z-scan confocal method for indirect focus location,” sent to Rev. Sci. Inst., (2017).
  13. F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).
  14. P. Castro-Marín, G. Kapellmann-Zafra, J. Garduño-Mejía, M. Rosete-Aguilar, and C. J. Román-Moreno, “Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses,” Rev. Sci. Instrum. 86(8), 085114 (2015).
    [Crossref] [PubMed]
  15. J. M. Dudley, D. T. Reid, W. Sibbett, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial Semiconductor Devices for Two Photon Absorption Autocorrelation of Ultrashort Light Pulses,” Appl. Opt. 37(34), 8142 (1998).
    [Crossref]
  16. A. Siegmann, Lasers. (University Science Books, 1986).
  17. L. García-Martínez, M. Rosete-Aguilar, and J. Garduño-Mejia, “Gauss-Legendre quadrature method used to evaluate the spatio-temporal intensity of ultrashort pulses in the focal region of lenses,” Appl. Opt. 51(3), 306–315 (2012).
    [Crossref] [PubMed]
  18. S. Anaya-Vera, L. García-Martínez, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejia, “Temporal spreading generated by diffraction in the focusing of ultrashort light pulses with perfectly conducting spherical mirrors,” J. Opt. Soc. Am. A 30(8), 1620–1626 (2013).
    [Crossref] [PubMed]
  19. O. G. Rodríguez-Herrera, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejía, “Temporal widening of a short polarized pulse focused with a high numerical aperture aplanatic lens,” J. Opt. Soc. Am. A 31(4), 696–703 (2014).
    [Crossref] [PubMed]
  20. N. C. Bruce, M. Rosete-Aguilar, O. G. Rodríguez-Herrera, J. Garduño-Mejía, and R. Ortega-Martínez, “Spatial chirp in the focusing of few-optical-cycle pulses by a mirror,” J. Mod. Opt. 60(13), 1037–1044 (2013).
    [Crossref]
  21. F. C. Estrada-Silva, J. Garduño-Mejía, and M. Rosete-Aguilar, “Third-order dispersión effects generated by non-ideal achromatic doublets on sub-20 femtosecond pulses,” J. Mod. Opt. 58(10), 825–834 (2011).
    [Crossref]
  22. M. A. González-Galicia, M. Rosete-Aguilar, J. Garduño-Mejía, N. C. Bruce, and R. Ortega-Martínez, “Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: homogenous illumination,” J. Opt. Soc. Am. A 28(10), 1979–1989 (2011).
    [Crossref] [PubMed]
  23. P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing ultrashort pulses,” Opt. Express 15(16), 10219–10230 (2007).
    [Crossref] [PubMed]

2016 (1)

P. Castro-Marín, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, D. T. Reid, C. Farrell, and G. E. Sandoval-Romero, “Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems,” Proc. SPIE 9953, 99530Q (2016).
[Crossref]

2015 (1)

P. Castro-Marín, G. Kapellmann-Zafra, J. Garduño-Mejía, M. Rosete-Aguilar, and C. J. Román-Moreno, “Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses,” Rev. Sci. Instrum. 86(8), 085114 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (1)

2011 (2)

2008 (1)

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

2007 (2)

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[Crossref]

P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing ultrashort pulses,” Opt. Express 15(16), 10219–10230 (2007).
[Crossref] [PubMed]

2006 (1)

2001 (1)

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

1999 (1)

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

1998 (1)

1993 (1)

1992 (1)

Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun. 94(4), 249–258 (1992).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Amir, W.

Anaya-Vera, S.

Barry, L. P.

Bor, Zs.

Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun. 94(4), 249–258 (1992).
[Crossref]

Bowlan, P.

Bruce, N. C.

Castro-Marín, P.

P. Castro-Marín, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, D. T. Reid, C. Farrell, and G. E. Sandoval-Romero, “Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems,” Proc. SPIE 9953, 99530Q (2016).
[Crossref]

P. Castro-Marín, G. Kapellmann-Zafra, J. Garduño-Mejía, M. Rosete-Aguilar, and C. J. Román-Moreno, “Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses,” Rev. Sci. Instrum. 86(8), 085114 (2015).
[Crossref] [PubMed]

Crozier, K. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

Dalgarno, P. A.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dudley, J. M.

Durfee, C. G.

Elings, V. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

Estrada-Silva, F. C.

F. C. Estrada-Silva, J. Garduño-Mejía, and M. Rosete-Aguilar, “Third-order dispersión effects generated by non-ideal achromatic doublets on sub-20 femtosecond pulses,” J. Mod. Opt. 58(10), 825–834 (2011).
[Crossref]

Farrell, C.

P. Castro-Marín, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, D. T. Reid, C. Farrell, and G. E. Sandoval-Romero, “Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems,” Proc. SPIE 9953, 99530Q (2016).
[Crossref]

Gabolde, P.

García-Martínez, L.

Garduño-Mejia, J.

Garduño-Mejía, J.

P. Castro-Marín, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, D. T. Reid, C. Farrell, and G. E. Sandoval-Romero, “Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems,” Proc. SPIE 9953, 99530Q (2016).
[Crossref]

P. Castro-Marín, G. Kapellmann-Zafra, J. Garduño-Mejía, M. Rosete-Aguilar, and C. J. Román-Moreno, “Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses,” Rev. Sci. Instrum. 86(8), 085114 (2015).
[Crossref] [PubMed]

O. G. Rodríguez-Herrera, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejía, “Temporal widening of a short polarized pulse focused with a high numerical aperture aplanatic lens,” J. Opt. Soc. Am. A 31(4), 696–703 (2014).
[Crossref] [PubMed]

N. C. Bruce, M. Rosete-Aguilar, O. G. Rodríguez-Herrera, J. Garduño-Mejía, and R. Ortega-Martínez, “Spatial chirp in the focusing of few-optical-cycle pulses by a mirror,” J. Mod. Opt. 60(13), 1037–1044 (2013).
[Crossref]

M. A. González-Galicia, M. Rosete-Aguilar, J. Garduño-Mejía, N. C. Bruce, and R. Ortega-Martínez, “Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: homogenous illumination,” J. Opt. Soc. Am. A 28(10), 1979–1989 (2011).
[Crossref] [PubMed]

F. C. Estrada-Silva, J. Garduño-Mejía, and M. Rosete-Aguilar, “Third-order dispersión effects generated by non-ideal achromatic doublets on sub-20 femtosecond pulses,” J. Mod. Opt. 58(10), 825–834 (2011).
[Crossref]

Gerardot, B. D.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

Ghislain, L. P.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

Goldberg, B. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

González-Galicia, M. A.

Hadfield, R. H.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

Harvey, J. D.

Horváth, Z. L.

Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun. 94(4), 249–258 (1992).
[Crossref]

Ippolito, S. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

Kapellmann-Zafra, G.

P. Castro-Marín, G. Kapellmann-Zafra, J. Garduño-Mejía, M. Rosete-Aguilar, and C. J. Román-Moreno, “Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses,” Rev. Sci. Instrum. 86(8), 085114 (2015).
[Crossref] [PubMed]

Kempe, M.

Kieu, K.

Kim, Y.

Kino, G. S.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

Lu, P.

Manalis, S. R.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

Milster, T. D.

Minne, S. C.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

Müller, M.

O’Connor, J. A.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

Ortega-Martínez, R.

N. C. Bruce, M. Rosete-Aguilar, O. G. Rodríguez-Herrera, J. Garduño-Mejía, and R. Ortega-Martínez, “Spatial chirp in the focusing of few-optical-cycle pulses by a mirror,” J. Mod. Opt. 60(13), 1037–1044 (2013).
[Crossref]

M. A. González-Galicia, M. Rosete-Aguilar, J. Garduño-Mejía, N. C. Bruce, and R. Ortega-Martínez, “Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: homogenous illumination,” J. Opt. Soc. Am. A 28(10), 1979–1989 (2011).
[Crossref] [PubMed]

Planchon, T. A.

Quate, C. F.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

Ramsay, E.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[Crossref]

Reid, D. T.

P. Castro-Marín, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, D. T. Reid, C. Farrell, and G. E. Sandoval-Romero, “Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems,” Proc. SPIE 9953, 99530Q (2016).
[Crossref]

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[Crossref]

J. M. Dudley, D. T. Reid, W. Sibbett, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial Semiconductor Devices for Two Photon Absorption Autocorrelation of Ultrashort Light Pulses,” Appl. Opt. 37(34), 8142 (1998).
[Crossref]

Rodríguez-Herrera, O. G.

O. G. Rodríguez-Herrera, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejía, “Temporal widening of a short polarized pulse focused with a high numerical aperture aplanatic lens,” J. Opt. Soc. Am. A 31(4), 696–703 (2014).
[Crossref] [PubMed]

N. C. Bruce, M. Rosete-Aguilar, O. G. Rodríguez-Herrera, J. Garduño-Mejía, and R. Ortega-Martínez, “Spatial chirp in the focusing of few-optical-cycle pulses by a mirror,” J. Mod. Opt. 60(13), 1037–1044 (2013).
[Crossref]

Román-Moreno, C. J.

P. Castro-Marín, G. Kapellmann-Zafra, J. Garduño-Mejía, M. Rosete-Aguilar, and C. J. Román-Moreno, “Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses,” Rev. Sci. Instrum. 86(8), 085114 (2015).
[Crossref] [PubMed]

Rosete-Aguilar, M.

P. Castro-Marín, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, D. T. Reid, C. Farrell, and G. E. Sandoval-Romero, “Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems,” Proc. SPIE 9953, 99530Q (2016).
[Crossref]

P. Castro-Marín, G. Kapellmann-Zafra, J. Garduño-Mejía, M. Rosete-Aguilar, and C. J. Román-Moreno, “Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses,” Rev. Sci. Instrum. 86(8), 085114 (2015).
[Crossref] [PubMed]

O. G. Rodríguez-Herrera, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejía, “Temporal widening of a short polarized pulse focused with a high numerical aperture aplanatic lens,” J. Opt. Soc. Am. A 31(4), 696–703 (2014).
[Crossref] [PubMed]

N. C. Bruce, M. Rosete-Aguilar, O. G. Rodríguez-Herrera, J. Garduño-Mejía, and R. Ortega-Martínez, “Spatial chirp in the focusing of few-optical-cycle pulses by a mirror,” J. Mod. Opt. 60(13), 1037–1044 (2013).
[Crossref]

S. Anaya-Vera, L. García-Martínez, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejia, “Temporal spreading generated by diffraction in the focusing of ultrashort light pulses with perfectly conducting spherical mirrors,” J. Opt. Soc. Am. A 30(8), 1620–1626 (2013).
[Crossref] [PubMed]

L. García-Martínez, M. Rosete-Aguilar, and J. Garduño-Mejia, “Gauss-Legendre quadrature method used to evaluate the spatio-temporal intensity of ultrashort pulses in the focal region of lenses,” Appl. Opt. 51(3), 306–315 (2012).
[Crossref] [PubMed]

M. A. González-Galicia, M. Rosete-Aguilar, J. Garduño-Mejía, N. C. Bruce, and R. Ortega-Martínez, “Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: homogenous illumination,” J. Opt. Soc. Am. A 28(10), 1979–1989 (2011).
[Crossref] [PubMed]

F. C. Estrada-Silva, J. Garduño-Mejía, and M. Rosete-Aguilar, “Third-order dispersión effects generated by non-ideal achromatic doublets on sub-20 femtosecond pulses,” J. Mod. Opt. 58(10), 825–834 (2011).
[Crossref]

Rudolph, W.

Sandoval-Romero, G. E.

P. Castro-Marín, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, D. T. Reid, C. Farrell, and G. E. Sandoval-Romero, “Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems,” Proc. SPIE 9953, 99530Q (2016).
[Crossref]

Serrels, K. A.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[Crossref]

Sibbett, W.

Squier, J. A.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Taghizadeh, M. R.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[Crossref]

Thomsen, B.

Thomson, M. J.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[Crossref]

Trebino, R.

Unlu, M. S.

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

Waddie, A. J.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[Crossref]

Warburton, R. J.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[Crossref]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wilder, K.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[Crossref]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[Crossref]

Biomed. Opt. Express (1)

J. Mod. Opt. (2)

N. C. Bruce, M. Rosete-Aguilar, O. G. Rodríguez-Herrera, J. Garduño-Mejía, and R. Ortega-Martínez, “Spatial chirp in the focusing of few-optical-cycle pulses by a mirror,” J. Mod. Opt. 60(13), 1037–1044 (2013).
[Crossref]

F. C. Estrada-Silva, J. Garduño-Mejía, and M. Rosete-Aguilar, “Third-order dispersión effects generated by non-ideal achromatic doublets on sub-20 femtosecond pulses,” J. Mod. Opt. 58(10), 825–834 (2011).
[Crossref]

J. Nanophotonics (1)

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens application for nanophotonic devices,” J. Nanophotonics 2(1), 021854 (2008).
[Crossref]

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun. 94(4), 249–258 (1992).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

P. Castro-Marín, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, D. T. Reid, C. Farrell, and G. E. Sandoval-Romero, “Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems,” Proc. SPIE 9953, 99530Q (2016).
[Crossref]

Rev. Sci. Instrum. (1)

P. Castro-Marín, G. Kapellmann-Zafra, J. Garduño-Mejía, M. Rosete-Aguilar, and C. J. Román-Moreno, “Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses,” Rev. Sci. Instrum. 86(8), 085114 (2015).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (4)

A. Siegmann, Lasers. (University Science Books, 1986).

P. Castro-Marín, G. Castro-Olvera, C. Ruíz, J. Garduño-Mejía, M. Rosete-Aguilar and N.C. Bruce, “Z-scan confocal method for indirect focus location,” sent to Rev. Sci. Inst., (2017).

F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).

M. Rutkauskas, D.T. Reid, J. Garduño-Mejía, M. Rosete-Aguilar, “Time-domain measurements reveal spatial aberrations in a sub-surface two-photon microscope,” accepted for publication in Appl. Opt., (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental set-up of the Autocorrelation z-scan technique (AC-z-scan).
Fig. 2
Fig. 2 (a) Optical spectrum and (b) Intensity Autocorrelation from the oscillator.
Fig. 3
Fig. 3 (Top figures) Interference pattern snap shots of the collimated beam incident on the lens under test (with the laser working in CW mode operation) measured with a shear plate interferometer showing (a) a corrected wavefront and (b) an uncorrected wavefront. (Bottom figures) The same interference patterns but with a high pass filter.
Fig. 4
Fig. 4 Corrected wavefront. (Left column) the D C TPA ( z )vs. z(blue line) and Δt( z ) vs. z (green line). (Right column) A C TPA ( τ,z ) vs. z vs. time, (a) AL4532-B (Aspheric f = 32mm), (b) 45-796 (achromatic doublet f = 40 mm), (c) 378-822-5 (Apochromatic 5x), (d)37-823-5 (Apochromatic 10x). An iris open to 8mm was placed in front of the lenses.
Fig. 5
Fig. 5 Aberrated wavefront. (left column) the D C TPA ( z ) vs. z (blue line) and t( z ) vs. z (green line), (right column) A C TPA ( τ,z )vs. z vs. time, (a) AL4532-B (Aspheric f = 32mm), (b) 45-796 (achromatic doublet f = 40 mm), (c)378-822-5 (Apochromatic 5x), (d)37-823-5 (Apochromatic 10x)

Tables (2)

Tables Icon

Table 1 Parameters of the lenses under test.

Tables Icon

Table 2 Depth of field comparison. The DOFcalculated with Eq. (4) and the DO F Exp measured from the experiment D C TPA ( z ) vs. z@ FWHMin Fig. 4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ZAC ( τ,z )= | [ E( t,z )+E( tτ,z ) ] 2 | 2 dt
S ZAC ( τ,z )= [ E 4 ( t,z )+ E 4 ( tτ,z )+4 E 2 ( t,z ) E 2 ( tτ,z ) ]dt= [ I 2 ( t,z ) ] dt+ [ I 2 ( tτ,z ) ]dt + [ 4I( t,z )I( tτ,z ) ]dt
S ZAC ( τ,z )=D C TPA ( z )+A C TPA ( τ,z )
z R πλ ( f D ) 2

Metrics