Abstract

Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating’s diffraction fringes was performed using a continuous wave laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of diffraction based security elements using direct laser interference patterning

Florian Rößler, Tim Kunze, and Andrés Fabián Lasagni
Opt. Express 25(19) 22959-22970 (2017)

Meta-hologram-based authentication scheme employing a speckle pattern fingerprint

Y. Blau, O. Bar-On, Y. Hanein, A. Boag, and J. Scheuer
Opt. Express 28(6) 8924-8936 (2020)

Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes

Wen-Song Li, Yuan Shen, Zhi-Jie Chen, Qian Cui, Sen-Sen Li, and Lu-Jian Chen
Appl. Opt. 56(3) 601-606 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Hardwick, W. Jackson, G. Wilson, and A. W. H. Mau, “Advanced Materials for Banknote Applications,” Adv. Mater. 13(12-13), 980–984 (2001).
    [Crossref]
  2. Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications,” Small 12(28), 3819–3826 (2016).
    [Crossref] [PubMed]
  3. S. Berthier, J. Boulenguez, and Z. Bálint, “Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes,” Appl. Phys. A 86(1), 123–130 (2007).
    [Crossref]
  4. S. Johansen, M. Radziwon, L. Tavares, and H. G. Rubahn, “Nanotag luminescent fingerprint anti-counterfeiting technology,” Nanoscale Res. Lett. 7(1), 262 (2012).
    [Crossref] [PubMed]
  5. P. W. Leech and R. A. Lee, “Optically variable micro-mirror arrays fabricated by graytone lithography,” Microelectron. Eng. 83(2), 351–356 (2006).
    [Crossref]
  6. Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Paper surfaces functionalized by nanoparticles,” Adv. Colloid Interface Sci. 163(1), 23–38 (2011).
    [Crossref] [PubMed]
  7. R. Xuan and J. Ge, “Photonic printing through the orientational tuning of photonic structures and its application to anticounterfeiting labels,” Langmuir 27(9), 5694–5699 (2011).
    [Crossref] [PubMed]
  8. Y. Guan, J. Hu, Y. Li, W. Ma, and Y. Zheng, “A new anti-counterfeiting method: fluorescent labeling by saframine T in tobacco seed,” Acta Physiol. Plant. 33(4), 1271–1276 (2011).
    [Crossref]
  9. J. K. Drinkwater, B. W. Holmes, and K. A. Jones, “Development and applications of diffractive optical security devices for banknotes and high value documents,” Proc. SPIE 3, 66–77 (2000).
    [Crossref]
  10. R. W. Phillips and A. F. Bleikolm, “Optical coatings for document security,” Appl. Opt. 35(28), 5529–5534 (1996).
    [Crossref] [PubMed]
  11. R. A. Lee, “Colourtone lithography,” Microelectron. Eng. 61–62, 105–111 (2002).
    [Crossref]
  12. J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
    [Crossref] [PubMed]
  13. Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(2), 161–167 (2003).
  14. S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
    [Crossref] [PubMed]
  15. J. Fei and R. Liu, “Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs,” Mater. Sci. Eng. C 63, 657–662 (2016).
    [Crossref] [PubMed]
  16. H. H. Cheung and S. H. Choi, “Implementation issues in RFID-based anti-counterfeiting systems,” Comput. Ind. 62(7), 708–718 (2011).
    [Crossref]
  17. X. L. Zhang and B. King, “An anti-counterfeiting RFID privacy protection protocol,” J. Comput. Sci. Technol. 22(3), 438–448 (2007).
    [Crossref]
  18. B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High performance organic transistor active-matrix driver developed on paper substrate,” Sci. Rep. 4(1), 6430 (2015).
    [Crossref] [PubMed]
  19. U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
    [Crossref] [PubMed]
  20. B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388–2403 (2013).
    [Crossref]
  21. L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
    [Crossref] [PubMed]
  22. A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-StepProductionofOrganizedSurface ArchitecturesonPolymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
    [Crossref]
  23. T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).
  24. I. Saxena, J. Liu, K. Ehmann, and J. Cao, “Periodic surface pattern fabrication via biprism interference micro-machining,” Surf. Topogr.: Metrol. Prop. 3(4), 045006 (2015).
    [Crossref]
  25. J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
    [Crossref]
  26. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
    [Crossref] [PubMed]
  27. D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
    [Crossref]
  28. D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized Laser Induced Holographic Surface Relief Gratings on Polymer Films,” Macromolecules 28(26), 8835–8839 (1995).
    [Crossref]
  29. S. Gurram and A. K. Nath, “Analysis of tuning of Bragg wavelength of photowritten fiber Bragg gratings during the inscription process using a biprism,” Appl. Opt. 46(12), 2197–2204 (2007).
    [Crossref] [PubMed]

2016 (2)

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

J. Fei and R. Liu, “Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs,” Mater. Sci. Eng. C 63, 657–662 (2016).
[Crossref] [PubMed]

2015 (2)

B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High performance organic transistor active-matrix driver developed on paper substrate,” Sci. Rep. 4(1), 6430 (2015).
[Crossref] [PubMed]

I. Saxena, J. Liu, K. Ehmann, and J. Cao, “Periodic surface pattern fabrication via biprism interference micro-machining,” Surf. Topogr.: Metrol. Prop. 3(4), 045006 (2015).
[Crossref]

2014 (1)

J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
[Crossref] [PubMed]

2013 (2)

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388–2403 (2013).
[Crossref]

2012 (3)

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

S. Johansen, M. Radziwon, L. Tavares, and H. G. Rubahn, “Nanotag luminescent fingerprint anti-counterfeiting technology,” Nanoscale Res. Lett. 7(1), 262 (2012).
[Crossref] [PubMed]

2011 (5)

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Paper surfaces functionalized by nanoparticles,” Adv. Colloid Interface Sci. 163(1), 23–38 (2011).
[Crossref] [PubMed]

R. Xuan and J. Ge, “Photonic printing through the orientational tuning of photonic structures and its application to anticounterfeiting labels,” Langmuir 27(9), 5694–5699 (2011).
[Crossref] [PubMed]

Y. Guan, J. Hu, Y. Li, W. Ma, and Y. Zheng, “A new anti-counterfeiting method: fluorescent labeling by saframine T in tobacco seed,” Acta Physiol. Plant. 33(4), 1271–1276 (2011).
[Crossref]

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

H. H. Cheung and S. H. Choi, “Implementation issues in RFID-based anti-counterfeiting systems,” Comput. Ind. 62(7), 708–718 (2011).
[Crossref]

2010 (2)

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

2007 (5)

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-StepProductionofOrganizedSurface ArchitecturesonPolymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).

S. Gurram and A. K. Nath, “Analysis of tuning of Bragg wavelength of photowritten fiber Bragg gratings during the inscription process using a biprism,” Appl. Opt. 46(12), 2197–2204 (2007).
[Crossref] [PubMed]

X. L. Zhang and B. King, “An anti-counterfeiting RFID privacy protection protocol,” J. Comput. Sci. Technol. 22(3), 438–448 (2007).
[Crossref]

S. Berthier, J. Boulenguez, and Z. Bálint, “Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes,” Appl. Phys. A 86(1), 123–130 (2007).
[Crossref]

2006 (1)

P. W. Leech and R. A. Lee, “Optically variable micro-mirror arrays fabricated by graytone lithography,” Microelectron. Eng. 83(2), 351–356 (2006).
[Crossref]

2003 (1)

Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(2), 161–167 (2003).

2002 (1)

R. A. Lee, “Colourtone lithography,” Microelectron. Eng. 61–62, 105–111 (2002).
[Crossref]

2001 (1)

B. Hardwick, W. Jackson, G. Wilson, and A. W. H. Mau, “Advanced Materials for Banknote Applications,” Adv. Mater. 13(12-13), 980–984 (2001).
[Crossref]

2000 (1)

J. K. Drinkwater, B. W. Holmes, and K. A. Jones, “Development and applications of diffractive optical security devices for banknotes and high value documents,” Proc. SPIE 3, 66–77 (2000).
[Crossref]

1996 (1)

1995 (1)

D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized Laser Induced Holographic Surface Relief Gratings on Polymer Films,” Macromolecules 28(26), 8835–8839 (1995).
[Crossref]

Acevedo, D. F.

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-StepProductionofOrganizedSurface ArchitecturesonPolymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

Andrulevicius, M.

T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).

Audouard, E.

Bae, H. J.

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

Bálint, Z.

S. Berthier, J. Boulenguez, and Z. Bálint, “Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes,” Appl. Phys. A 86(1), 123–130 (2007).
[Crossref]

Barbero, C. A.

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-StepProductionofOrganizedSurface ArchitecturesonPolymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

Berthier, S.

S. Berthier, J. Boulenguez, and Z. Bálint, “Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes,” Appl. Phys. A 86(1), 123–130 (2007).
[Crossref]

Bleikolm, A. F.

Boulenguez, J.

S. Berthier, J. Boulenguez, and Z. Bálint, “Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes,” Appl. Phys. A 86(1), 123–130 (2007).
[Crossref]

Cao, J.

I. Saxena, J. Liu, K. Ehmann, and J. Cao, “Periodic surface pattern fabrication via biprism interference micro-machining,” Surf. Topogr.: Metrol. Prop. 3(4), 045006 (2015).
[Crossref]

Chan, P. K. L.

B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High performance organic transistor active-matrix driver developed on paper substrate,” Sci. Rep. 4(1), 6430 (2015).
[Crossref] [PubMed]

Cheung, H. H.

H. H. Cheung and S. H. Choi, “Implementation issues in RFID-based anti-counterfeiting systems,” Comput. Ind. 62(7), 708–718 (2011).
[Crossref]

Chi, S.

Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(2), 161–167 (2003).

Choi, S. H.

H. H. Cheung and S. H. Choi, “Implementation issues in RFID-based anti-counterfeiting systems,” Comput. Ind. 62(7), 708–718 (2011).
[Crossref]

Choi, S.-E.

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

Colombier, J. P.

Cooks, R. G.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Cosso, R. G.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Dai, Q.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Dill, A.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Drinkwater, J. K.

J. K. Drinkwater, B. W. Holmes, and K. A. Jones, “Development and applications of diffractive optical security devices for banknotes and high value documents,” Proc. SPIE 3, 66–77 (2000).
[Crossref]

Dusser, B.

Eberlin, L. S.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Eberlin, M. N.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Ehmann, K.

I. Saxena, J. Liu, K. Ehmann, and J. Cao, “Periodic surface pattern fabrication via biprism interference micro-machining,” Surf. Topogr.: Metrol. Prop. 3(4), 045006 (2015).
[Crossref]

Faure, N.

Fei, J.

J. Fei and R. Liu, “Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs,” Mater. Sci. Eng. C 63, 657–662 (2016).
[Crossref] [PubMed]

Garnier, G.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Paper surfaces functionalized by nanoparticles,” Adv. Colloid Interface Sci. 163(1), 23–38 (2011).
[Crossref] [PubMed]

Ge, J.

R. Xuan and J. Ge, “Photonic printing through the orientational tuning of photonic structures and its application to anticounterfeiting labels,” Langmuir 27(9), 5694–5699 (2011).
[Crossref] [PubMed]

Gopal, A. V.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Griškonis, E.

T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).

Guan, Y.

Y. Guan, J. Hu, Y. Li, W. Ma, and Y. Zheng, “A new anti-counterfeiting method: fluorescent labeling by saframine T in tobacco seed,” Acta Physiol. Plant. 33(4), 1271–1276 (2011).
[Crossref]

Guobiene, A.

T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).

Gurram, S.

Haddad, R.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Han, S.

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

Hardwick, B.

B. Hardwick, W. Jackson, G. Wilson, and A. W. H. Mau, “Advanced Materials for Banknote Applications,” Adv. Mater. 13(12-13), 980–984 (2001).
[Crossref]

Heo, Y.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Holmes, B. W.

J. K. Drinkwater, B. W. Holmes, and K. A. Jones, “Development and applications of diffractive optical security devices for banknotes and high value documents,” Proc. SPIE 3, 66–77 (2000).
[Crossref]

Hu, J.

Y. Guan, J. Hu, Y. Li, W. Ma, and Y. Zheng, “A new anti-counterfeiting method: fluorescent labeling by saframine T in tobacco seed,” Acta Physiol. Plant. 33(4), 1271–1276 (2011).
[Crossref]

Ifa, D. R.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Ikeda, M.

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

Jackson, W.

B. Hardwick, W. Jackson, G. Wilson, and A. W. H. Mau, “Advanced Materials for Banknote Applications,” Adv. Mater. 13(12-13), 980–984 (2001).
[Crossref]

Janušas, G.

T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).

Jeon, S.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388–2403 (2013).
[Crossref]

Jiang, X. L.

D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized Laser Induced Holographic Surface Relief Gratings on Polymer Films,” Macromolecules 28(26), 8835–8839 (1995).
[Crossref]

Johansen, S.

S. Johansen, M. Radziwon, L. Tavares, and H. G. Rubahn, “Nanotag luminescent fingerprint anti-counterfeiting technology,” Nanoscale Res. Lett. 7(1), 262 (2012).
[Crossref] [PubMed]

Jones, K. A.

J. K. Drinkwater, B. W. Holmes, and K. A. Jones, “Development and applications of diffractive optical security devices for banknotes and high value documents,” Proc. SPIE 3, 66–77 (2000).
[Crossref]

Jourlin, M.

Kang, H.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Kim, D. Y.

D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized Laser Induced Holographic Surface Relief Gratings on Polymer Films,” Macromolecules 28(26), 8835–8839 (1995).
[Crossref]

Kim, J.

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

Kim, J.-M.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388–2403 (2013).
[Crossref]

Kim, S. H.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

King, B.

X. L. Zhang and B. King, “An anti-counterfeiting RFID privacy protection protocol,” J. Comput. Sci. Technol. 22(3), 438–448 (2007).
[Crossref]

Klauk, H.

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

Kumar, J.

D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized Laser Induced Holographic Surface Relief Gratings on Polymer Films,” Macromolecules 28(26), 8835–8839 (1995).
[Crossref]

Kuwabara, H.

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

Kwon, S.

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

Lan, S.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Lasagni, A. F.

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-StepProductionofOrganizedSurface ArchitecturesonPolymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

Lee, J.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388–2403 (2013).
[Crossref]

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388–2403 (2013).
[Crossref]

Lee, J. S.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Lee, R. A.

P. W. Leech and R. A. Lee, “Optically variable micro-mirror arrays fabricated by graytone lithography,” Microelectron. Eng. 83(2), 351–356 (2006).
[Crossref]

R. A. Lee, “Colourtone lithography,” Microelectron. Eng. 61–62, 105–111 (2002).
[Crossref]

Lee, S. H.

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

Leech, P. W.

P. W. Leech and R. A. Lee, “Optically variable micro-mirror arrays fabricated by graytone lithography,” Microelectron. Eng. 83(2), 351–356 (2006).
[Crossref]

Li, D.

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Paper surfaces functionalized by nanoparticles,” Adv. Colloid Interface Sci. 163(1), 23–38 (2011).
[Crossref] [PubMed]

Li, L.

D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized Laser Induced Holographic Surface Relief Gratings on Polymer Films,” Macromolecules 28(26), 8835–8839 (1995).
[Crossref]

Li, Y.

Y. Guan, J. Hu, Y. Li, W. Ma, and Y. Zheng, “A new anti-counterfeiting method: fluorescent labeling by saframine T in tobacco seed,” Acta Physiol. Plant. 33(4), 1271–1276 (2011).
[Crossref]

Liu, H.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Liu, J.

I. Saxena, J. Liu, K. Ehmann, and J. Cao, “Periodic surface pattern fabrication via biprism interference micro-machining,” Surf. Topogr.: Metrol. Prop. 3(4), 045006 (2015).
[Crossref]

Liu, R.

J. Fei and R. Liu, “Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs,” Mater. Sci. Eng. C 63, 657–662 (2016).
[Crossref] [PubMed]

Lu, Y. T.

Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(2), 161–167 (2003).

Lysak, T. M.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Ma, W.

Y. Guan, J. Hu, Y. Li, W. Ma, and Y. Zheng, “A new anti-counterfeiting method: fluorescent labeling by saframine T in tobacco seed,” Acta Physiol. Plant. 33(4), 1271–1276 (2011).
[Crossref]

Maia, D. R. J.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Maldaner, A. O.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Maple, C.

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]

Mau, A. W. H.

B. Hardwick, W. Jackson, G. Wilson, and A. W. H. Mau, “Advanced Materials for Banknote Applications,” Adv. Mater. 13(12-13), 980–984 (2001).
[Crossref]

Mücklich, F.

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-StepProductionofOrganizedSurface ArchitecturesonPolymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

Nath, A. K.

Ngo, Y. H.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Paper surfaces functionalized by nanoparticles,” Adv. Colloid Interface Sci. 163(1), 23–38 (2011).
[Crossref] [PubMed]

Oh, Y. K.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Park, I. S.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388–2403 (2013).
[Crossref]

Park, W.

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

Peng, B.

B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High performance organic transistor active-matrix driver developed on paper substrate,” Sci. Rep. 4(1), 6430 (2015).
[Crossref] [PubMed]

Phillips, R. W.

Puodžiukynas, L.

T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).

Radziwon, M.

S. Johansen, M. Radziwon, L. Tavares, and H. G. Rubahn, “Nanotag luminescent fingerprint anti-counterfeiting technology,” Nanoscale Res. Lett. 7(1), 262 (2012).
[Crossref] [PubMed]

Ren, X.

B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High performance organic transistor active-matrix driver developed on paper substrate,” Sci. Rep. 4(1), 6430 (2015).
[Crossref] [PubMed]

Roberts, R. C.

B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High performance organic transistor active-matrix driver developed on paper substrate,” Sci. Rep. 4(1), 6430 (2015).
[Crossref] [PubMed]

Romão, W.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Rubahn, H. G.

S. Johansen, M. Radziwon, L. Tavares, and H. G. Rubahn, “Nanotag luminescent fingerprint anti-counterfeiting technology,” Nanoscale Res. Lett. 7(1), 262 (2012).
[Crossref] [PubMed]

Sagan, Z.

Sanvido, G. B.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Sarabia Neto, R. C.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Saxena, I.

I. Saxena, J. Liu, K. Ehmann, and J. Cao, “Periodic surface pattern fabrication via biprism interference micro-machining,” Surf. Topogr.: Metrol. Prop. 3(4), 045006 (2015).
[Crossref]

Sekitani, T.

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

Sheng, Z.-M.

J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
[Crossref] [PubMed]

Shieh, H.-P. D.

J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
[Crossref] [PubMed]

Shin, S.

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

Shivshankar, V.

D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized Laser Induced Holographic Surface Relief Gratings on Polymer Films,” Macromolecules 28(26), 8835–8839 (1995).
[Crossref]

Simon, G. P.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Paper surfaces functionalized by nanoparticles,” Adv. Colloid Interface Sci. 163(1), 23–38 (2011).
[Crossref] [PubMed]

Soder, H.

Someya, T.

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

Sun, N.-L.

J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
[Crossref] [PubMed]

Takimiya, K.

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

Tamulevicius, S.

T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).

Tamulevicius, T.

T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).

Tavares, L.

S. Johansen, M. Radziwon, L. Tavares, and H. G. Rubahn, “Nanotag luminescent fingerprint anti-counterfeiting technology,” Nanoscale Res. Lett. 7(1), 262 (2012).
[Crossref] [PubMed]

Tripathy, S. K.

D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized Laser Induced Holographic Surface Relief Gratings on Polymer Films,” Macromolecules 28(26), 8835–8839 (1995).
[Crossref]

Trofimov, V. A.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Vaz, B. G.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Wang, D.

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]

Wang, X.

B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High performance organic transistor active-matrix driver developed on paper substrate,” Sci. Rep. 4(1), 6430 (2015).
[Crossref] [PubMed]

Wang, Z.

B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High performance organic transistor active-matrix driver developed on paper substrate,” Sci. Rep. 4(1), 6430 (2015).
[Crossref] [PubMed]

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]

Wilson, G.

B. Hardwick, W. Jackson, G. Wilson, and A. W. H. Mau, “Advanced Materials for Banknote Applications,” Adv. Mater. 13(12-13), 980–984 (2001).
[Crossref]

Wu, L.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Xuan, R.

R. Xuan and J. Ge, “Photonic printing through the orientational tuning of photonic structures and its application to anticounterfeiting labels,” Langmuir 27(9), 5694–5699 (2011).
[Crossref] [PubMed]

Yamamoto, T.

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

Yao, J.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Ye, Z.-C.

J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
[Crossref] [PubMed]

Yoon, B.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388–2403 (2013).
[Crossref]

Yue, Y.

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]

Zacca, J. J.

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Zhang, C.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Zhang, J.

J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
[Crossref] [PubMed]

Zhang, R.

J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
[Crossref] [PubMed]

Zhang, X. L.

X. L. Zhang and B. King, “An anti-counterfeiting RFID privacy protection protocol,” J. Comput. Sci. Technol. 22(3), 438–448 (2007).
[Crossref]

Zhang, Z.

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]

Zheng, J.

J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
[Crossref] [PubMed]

Zheng, Y.

Y. Guan, J. Hu, Y. Li, W. Ma, and Y. Zheng, “A new anti-counterfeiting method: fluorescent labeling by saframine T in tobacco seed,” Acta Physiol. Plant. 33(4), 1271–1276 (2011).
[Crossref]

Zschieschang, U.

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

Acta Physiol. Plant. (1)

Y. Guan, J. Hu, Y. Li, W. Ma, and Y. Zheng, “A new anti-counterfeiting method: fluorescent labeling by saframine T in tobacco seed,” Acta Physiol. Plant. 33(4), 1271–1276 (2011).
[Crossref]

Adv. Colloid Interface Sci. (1)

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Paper surfaces functionalized by nanoparticles,” Adv. Colloid Interface Sci. 163(1), 23–38 (2011).
[Crossref] [PubMed]

Adv. Eng. Mater. (1)

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-StepProductionofOrganizedSurface ArchitecturesonPolymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

Adv. Mater. (3)

B. Hardwick, W. Jackson, G. Wilson, and A. W. H. Mau, “Advanced Materials for Banknote Applications,” Adv. Mater. 13(12-13), 980–984 (2001).
[Crossref]

S. Han, H. J. Bae, J. Kim, S. Shin, S.-E. Choi, S. H. Lee, S. Kwon, and W. Park, “Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs,” Adv. Mater. 24(44), 5924–5929 (2012).
[Crossref] [PubMed]

U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, “Organic electronics on banknotes,” Adv. Mater. 23(5), 654–658 (2011).
[Crossref] [PubMed]

Analyst (Lond.) (1)

L. S. Eberlin, R. Haddad, R. C. Sarabia Neto, R. G. Cosso, D. R. J. Maia, A. O. Maldaner, J. J. Zacca, G. B. Sanvido, W. Romão, B. G. Vaz, D. R. Ifa, A. Dill, R. G. Cooks, and M. N. Eberlin, “Instantaneous chemical profiles of banknotes by ambient mass spectrometry,” Analyst (Lond.) 135(10), 2533–2539 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. A (1)

S. Berthier, J. Boulenguez, and Z. Bálint, “Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes,” Appl. Phys. A 86(1), 123–130 (2007).
[Crossref]

Appl. Phys. Lett. (1)

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]

Appl. Surf. Sci. (1)

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Comput. Ind. (1)

H. H. Cheung and S. H. Choi, “Implementation issues in RFID-based anti-counterfeiting systems,” Comput. Ind. 62(7), 708–718 (2011).
[Crossref]

J. Comput. Sci. Technol. (1)

X. L. Zhang and B. King, “An anti-counterfeiting RFID privacy protection protocol,” J. Comput. Sci. Technol. 22(3), 438–448 (2007).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388–2403 (2013).
[Crossref]

Langmuir (1)

R. Xuan and J. Ge, “Photonic printing through the orientational tuning of photonic structures and its application to anticounterfeiting labels,” Langmuir 27(9), 5694–5699 (2011).
[Crossref] [PubMed]

Macromolecules (1)

D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized Laser Induced Holographic Surface Relief Gratings on Polymer Films,” Macromolecules 28(26), 8835–8839 (1995).
[Crossref]

Mater. Sci. (1)

T. Tamulevičius, S. Tamulevičius, M. Andrulevičius, A. Guobienė, L. Puodžiukynas, G. Janušas, and E. Griškonis, “Formation of OVD Using Laser Interference Lithography,” Mater. Sci. 13, 183–187 (2007).

Mater. Sci. Eng. C (1)

J. Fei and R. Liu, “Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs,” Mater. Sci. Eng. C 63, 657–662 (2016).
[Crossref] [PubMed]

Microelectron. Eng. (2)

R. A. Lee, “Colourtone lithography,” Microelectron. Eng. 61–62, 105–111 (2002).
[Crossref]

P. W. Leech and R. A. Lee, “Optically variable micro-mirror arrays fabricated by graytone lithography,” Microelectron. Eng. 83(2), 351–356 (2006).
[Crossref]

Nanoscale Res. Lett. (1)

S. Johansen, M. Radziwon, L. Tavares, and H. G. Rubahn, “Nanotag luminescent fingerprint anti-counterfeiting technology,” Nanoscale Res. Lett. 7(1), 262 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Optik (Stuttg.) (1)

Y. T. Lu and S. Chi, “Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications,” Optik (Stuttg.) 114(2), 161–167 (2003).

Proc. SPIE (1)

J. K. Drinkwater, B. W. Holmes, and K. A. Jones, “Development and applications of diffractive optical security devices for banknotes and high value documents,” Proc. SPIE 3, 66–77 (2000).
[Crossref]

Sci. Rep. (2)

J. Zheng, Z.-C. Ye, N.-L. Sun, R. Zhang, Z.-M. Sheng, H.-P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2014).
[Crossref] [PubMed]

B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High performance organic transistor active-matrix driver developed on paper substrate,” Sci. Rep. 4(1), 6430 (2015).
[Crossref] [PubMed]

Small (1)

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Surf. Topogr.: Metrol. Prop. (1)

I. Saxena, J. Liu, K. Ehmann, and J. Cao, “Periodic surface pattern fabrication via biprism interference micro-machining,” Surf. Topogr.: Metrol. Prop. 3(4), 045006 (2015).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (2440 KB)      Support for Figure 5

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Rotatable interference fringe patterning on different materials. (a) Schematic illustration of the laser interference fringe patterning with FB. Laser beam diameter has been magnified for understanding. The power of laser is appropriately controlled by attenuator based on the properties of the target material. FB and quarter-wave plate are mounted on rotation stage perpendicular to the optical axis in order to precisely rotate the interference fringe. Mask of circular aperture is placed in front of the target material. (b~d) Optical microscopic images of the fabricated grating patterns of NAK80, aluminum, and silicon plates, in alphabetical order.
Fig. 2
Fig. 2 Beam refraction direction and angle at the surface of Fresnel biprism.
Fig. 3
Fig. 3 Analysis of interference characteristics. (a) Conceptual illustration for observing the interference intensity pattern with the magnification optical system combined with lens and CCD according to interference position. R denotes the rotation angle of combination FB and λ/4 plate. Z denotes the distance from mask to interference position, which is observed by a combination of lens and CCD. (b) Laser interference intensity images acquired by moving CCD and lens along the optical axis. The scale bar indicates 200 μm. (c) Line profiles of interference intensity along the dashed lines in Fig. 2(b). The inset shows the FFT analysis of line profiles. Optical microscope images show the patterning results with respect to Z positions. (d) Interference images according to rotating angle of FB and λ/4 plate. The scale bar indicates 100 μm.
Fig. 4
Fig. 4 Comparing the fabricated patterns on the NAK80. The images were captured by scanning electron microscope. (a) A circle-shaped grating pattern was fabricated using a 112-mJ pulse for 1 second. (b) Magnified image of Fig. 3(a). The inset shows the diffraction fringe generated by the continuous laser. (c) Grating pattern was fabricated using a 112-mJ pulse for 5 seconds. (d) Magnified image of Fig. 3(c). It shows the rougher fabricated surface compared to Fig. 3(b). Inset shows the diffraction image.
Fig. 5
Fig. 5 Diffraction fringe detecting apparatus and grating patterning on samples. (a) Conceptual image of the system for measuring four different diffraction fringes simultaneously by using two lasers, two polarizers, and two color filters. The direction of the arrow indicates the transmitting axis of polarizer. Two linear polarizers are combined together such that their axes are perpendicular to each other. In addition, the red and blue color filters are placed adjacently. The bonding lines of the polarizer and the color filter are perpendicular to each other’s optical axis. The figure also illustrates the positioning of the Beam expander (BE), Beam splitter (BS), Polarizer (P), and Color filter (CF). The red laser beam path is illustrated, but the green laser is omitted for the sake of the reader’s understanding. (b) Images of the four diffracted fringes at CCD. The left half plane of the detector collects the horizontally linear polarized signal and right half plane of detector views the vertically linear polarized signal. The center dot line indicates that the CCD detecting plane is divided virtually into two areas, and the arrows in the image denote the detected linear polarization direction of beam at each side. (c) Fabricated interference pattern on a metal block for analysis with smartphone. (d) Attachment of the gratings patterned on aluminum film on a Korean banknote. See Visualization 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ=arcsin(μsinα)α
P= λ 2sinθ

Metrics