Abstract

We demonstrate a compact broadband high-resolution spectrometer approach. A dihedral reflector is used to reflect the dispersed light back to the grating for a second diffraction, folding the light path in a compact space, and enhancing the spectral resolution. The theoretical formulas for the system are strictly derived. In addition, a prototype of this spectrometer for fiber communication in the infrared wavelength range has been built. The optics can fit inside a volume of 12 cm × 14 cm × 5 cm and its spectral resolution is 57 pm over a wide wavelength range from 1250 nm to 1650 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact high-resolution spectrometer using two plane gratings with triple dispersion

Yajun Pang, Yinxin Zhang, Huaidong Yang, Zeyang Liu, Zhanhua Huang, and Guofan Jin
Opt. Express 26(5) 6382-6391 (2018)

Design of a compact and ultrahigh-resolution Fourier-transform spectrometer

B. Imran Akca
Opt. Express 25(2) 1487-1494 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Utter and J. R. C. Lopez-Urrutia, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
    [Crossref]
  2. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
    [Crossref]
  3. T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
    [Crossref]
  4. B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).
    [Crossref] [PubMed]
  5. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
    [Crossref] [PubMed]
  6. L. Xia, Z. Yang, S. Yin, Q. Deng, and C. Du, “Method of realizing compact fourier transform spectrometer without moving parts based on birefringent liquid crystal,” Opt. Eng. 53(7), 074109 (2014).
    [Crossref]
  7. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46(20), 4294–4303 (2007).
    [Crossref] [PubMed]
  8. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
    [Crossref]
  9. E. Ye, A. H. Atabaki, N. Han, and R. J. Ram, “Miniature, sub-nanometer resolution Talbot spectrometer,” Opt. Lett. 41(11), 2434–2437 (2016).
    [Crossref] [PubMed]
  10. E. S. Lee, “Spectral resolution enhancement without increasing the number of grooves in grating-based spectrometers,” Opt. Lett. 36(24), 4803–4805 (2011).
    [Crossref] [PubMed]
  11. Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
    [Crossref]
  12. J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” J. Lightwave Technol. 24(11), 4162–4171 (2006).
    [Crossref]
  13. W. Neumann, Fundamentals of dispersive optical spectroscopy systems (Bellingham, Washington, 2014), Chap. 2.
  14. ZEMAX development corporation, Optical design program user’s guide, June (2009).

2016 (1)

2014 (1)

L. Xia, Z. Yang, S. Yin, Q. Deng, and C. Du, “Method of realizing compact fourier transform spectrometer without moving parts based on birefringent liquid crystal,” Opt. Eng. 53(7), 074109 (2014).
[Crossref]

2013 (1)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

2007 (2)

2006 (1)

2005 (2)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

2002 (1)

S. B. Utter and J. R. C. Lopez-Urrutia, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

Atabaki, A. H.

Badoil, B.

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).
[Crossref] [PubMed]

Cathelinaud, M.

Chen, J. K.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Chen, L. Y.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Chen, Y. R.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Choi, H. Y.

Chung, Y. C.

Deng, Q.

L. Xia, Z. Yang, S. Yin, Q. Deng, and C. Du, “Method of realizing compact fourier transform spectrometer without moving parts based on birefringent liquid crystal,” Opt. Eng. 53(7), 074109 (2014).
[Crossref]

Du, C.

L. Xia, Z. Yang, S. Yin, Q. Deng, and C. Du, “Method of realizing compact fourier transform spectrometer without moving parts based on birefringent liquid crystal,” Opt. Eng. 53(7), 074109 (2014).
[Crossref]

Emadi, A.

Grabarnik, S.

Han, N.

Han, T.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Kong, Y. F.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Lee, E. S.

Lee, J. H.

Lemarchand, F.

Lequime, M.

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Loktev, M.

Lopez-Urrutia, J. R. C.

S. B. Utter and J. R. C. Lopez-Urrutia, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

Miao, J.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Pan, Z.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Qiu, J. H.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Ram, R. J.

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).
[Crossref] [PubMed]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Shin, S. K.

Sokolova, E.

Sun, B.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Utter, S. B.

S. B. Utter and J. R. C. Lopez-Urrutia, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

Vdovin, G.

Willner, A. E.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Wolffenbuttel, R.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

Wu, Y. H.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Xia, L.

L. Xia, Z. Yang, S. Yin, Q. Deng, and C. Du, “Method of realizing compact fourier transform spectrometer without moving parts based on birefringent liquid crystal,” Opt. Eng. 53(7), 074109 (2014).
[Crossref]

Xu, C. H.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Yang, Z.

L. Xia, Z. Yang, S. Yin, Q. Deng, and C. Du, “Method of realizing compact fourier transform spectrometer without moving parts based on birefringent liquid crystal,” Opt. Eng. 53(7), 074109 (2014).
[Crossref]

Ye, E.

Yin, S.

L. Xia, Z. Yang, S. Yin, Q. Deng, and C. Du, “Method of realizing compact fourier transform spectrometer without moving parts based on birefringent liquid crystal,” Opt. Eng. 53(7), 074109 (2014).
[Crossref]

Yu, C.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Zheng, Y. X.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Zhou, E.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Appl. Opt. (1)

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

Nat. Photonics (1)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Opt. Eng. (1)

L. Xia, Z. Yang, S. Yin, Q. Deng, and C. Du, “Method of realizing compact fourier transform spectrometer without moving parts based on birefringent liquid crystal,” Opt. Eng. 53(7), 074109 (2014).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Opt. Lett. (3)

Rev. Sci. Instrum. (2)

S. B. Utter and J. R. C. Lopez-Urrutia, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, E. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Other (2)

W. Neumann, Fundamentals of dispersive optical spectroscopy systems (Bellingham, Washington, 2014), Chap. 2.

ZEMAX development corporation, Optical design program user’s guide, June (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The multiplexed grating spectrometer system. (a) Schematic of the spectrometer: M1, the collimating off-axis parabolic mirror; M2, the focusing off-axis parabolic mirror; R, the dihedral reflector; G, the plane grating; D, the single-point detector; and PBS, the polarization beam splitter. The beam colors of red and blue represent the two beams with different original states of polarization (SOPs). (b) Side view of the dihedral reflector.
Fig. 2
Fig. 2 Diffraction light paths.
Fig. 3
Fig. 3 Comparison of angular resolution between multiplexed grating and one-time diffraction spectrometers.
Fig. 4
Fig. 4 Optimized layout of the multiplexed grating approach.
Fig. 5
Fig. 5 Spot diagrams in ZEMAX. (a) Spot diagram of the multiplexed grating approach. (b) Spot diagram of the one-time diffraction scheme.
Fig. 6
Fig. 6 Comparison of instrument resolution between multiplexed grating (MG) and one-time diffraction (OTD) spectrometer schemes.
Fig. 7
Fig. 7 The prototype of the multiplexed grating spectrometer.
Fig. 8
Fig. 8 The DFB laser spectrum as measured using the proposed multiplexed grating spectrometer.
Fig. 9
Fig. 9 The broadband source spectrum as measured using the proposed multiplexed grating spectrometer.

Tables (1)

Tables Icon

Table 1 Basic parameters of the spectrometer scheme

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d ( sin θ ± sin i ) = m λ ,
d ( sin θ + sin i ) = λ .
λ = λ 0 + d [ sin ( θ 0 + δ ) sin ( θ 0 ) ] .
d ( sin i 0 + sin θ 0 ) = m λ 0 ,
d [ sin i 0 + sin ( θ 0 + Δ θ 1 ) ] = m ( λ 0 + Δ λ ) ,
Δ θ 1 Δ λ = m d cos θ 1 .
d ( sin θ 0 + sin i 0 ) = m λ 0 ,
d [ sin ( θ 0 Δ θ 1 ) + sin ( i 0 + Δ θ 2 ) ] = m ( λ 0 + Δ λ ) ,
Δ θ 2 Δ λ = 2 m d cos i 0 = 2 m cos θ 0 d cos θ 1 cos i 0 = 2 cos θ 0 cos i 0 Δ θ 1 Δ λ .

Metrics