Abstract

The rate of vapor condensation on a solid surface depends on the ambient relative humidity (RH). Also, surface plasmon resonance (SPR) on a metal layer is sensitive to the refractive index change of its adjacent dielectric. The SPR effect appears as soon as a small amount of moisture forms on the sensor, resulting in a decrease in the amount of light transmitted due to plasmonic loss. Using this concept, we developed a fiber optic humidity sensor based on SPR. It can measure the ambient RH over a dynamic range from 10% to 85% with an accuracy of 3%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tungsten disulfide (WS2) based all-fiber-optic humidity sensor

Yunhan Luo, Chaoying Chen, Kai Xia, Shuihua Peng, Heyuan Guan, Jieyuan Tang, Huiui Lu, Jianhui Yu, Jun Zhang, Yi Xiao, and Zhe Chen
Opt. Express 24(8) 8956-8966 (2016)

Optical fiber humidity sensor based on evanescent-wave scattering

Lina Xu, Joseph C. Fanguy, Krunal Soni, and Shiquan Tao
Opt. Lett. 29(11) 1191-1193 (2004)

Relative humidity sensor with optical fiber Bragg gratings

Pascal Kronenberg, Pramod K. Rastogi, Philippe Giaccari, and Hans G. Limberger
Opt. Lett. 27(16) 1385-1387 (2002)

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–14 (2005).
    [Crossref]
  2. Z. M. Rittersma, “Recent achievements in miniaturized humidity sensors—a review of transduction techniques,” Sens. Actuators A Phys. 96(3), 196–210 (2002).
    [Crossref]
  3. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
    [Crossref]
  4. L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
    [Crossref]
  5. S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
    [Crossref] [PubMed]
  6. M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
    [Crossref]
  7. Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, “Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing,” Opt. Express 20(17), 19404–19411 (2012).
    [Crossref] [PubMed]
  8. S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
    [Crossref] [PubMed]
  9. T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
    [Crossref]
  10. M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
    [Crossref]
  11. J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
    [Crossref]
  12. J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
    [Crossref]
  13. H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
    [Crossref]
  14. M. H. Yang, H. L. Liu, D. H. Zhang, and X. L. Tong, “Hydrogen sensing performance comparison of Pd layer and Pd/WO 3composite thin film coated on side-polished single- and multimode fibers,” Sens. Actuators B Chem. 149(1), 161–164 (2010).
    [Crossref]
  15. J. Senosiain, I. Díaz, A. Gastón, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50(6), 1656–1660 (2001).
    [Crossref]
  16. F. Villuendas and J. Pelayo, “Optical fibre device for chemical sensing based on surface plasmon excitridon,” Sens. Actuators A Phys. 23(1-3), 1142–1145 (1990).
    [Crossref]
  17. R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
    [Crossref] [PubMed]
  18. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  19. A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevill, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. J. 3, 67–72 (2000).
  20. J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(3), 401–405 (1995).
    [Crossref]
  21. P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
    [Crossref]
  22. E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
    [Crossref] [PubMed]
  23. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
    [Crossref]
  24. H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “Smart textile plasmonic fiber dew sensors,” Opt. Express 23(11), 14981–14992 (2015).
    [Crossref] [PubMed]
  25. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (John Wiley and Sons, 2007).
  26. W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
    [Crossref]

2016 (1)

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

2015 (2)

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “Smart textile plasmonic fiber dew sensors,” Opt. Express 23(11), 14981–14992 (2015).
[Crossref] [PubMed]

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

2014 (1)

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

2013 (2)

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

2012 (4)

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, “Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing,” Opt. Express 20(17), 19404–19411 (2012).
[Crossref] [PubMed]

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

2011 (1)

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

2010 (1)

M. H. Yang, H. L. Liu, D. H. Zhang, and X. L. Tong, “Hydrogen sensing performance comparison of Pd layer and Pd/WO 3composite thin film coated on side-polished single- and multimode fibers,” Sens. Actuators B Chem. 149(1), 161–164 (2010).
[Crossref]

2008 (3)

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

2007 (1)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

2006 (1)

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

2005 (1)

C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–14 (2005).
[Crossref]

2002 (2)

Z. M. Rittersma, “Recent achievements in miniaturized humidity sensors—a review of transduction techniques,” Sens. Actuators A Phys. 96(3), 196–210 (2002).
[Crossref]

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

2001 (1)

J. Senosiain, I. Díaz, A. Gastón, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50(6), 1656–1660 (2001).
[Crossref]

2000 (1)

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevill, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. J. 3, 67–72 (2000).

1996 (1)

W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
[Crossref]

1995 (1)

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(3), 401–405 (1995).
[Crossref]

1990 (1)

F. Villuendas and J. Pelayo, “Optical fibre device for chemical sensing based on surface plasmon excitridon,” Sens. Actuators A Phys. 23(1-3), 1142–1145 (1990).
[Crossref]

Alduchov, W.

W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
[Crossref]

Alwis, L.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

André, P. S.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Antunes, P.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Arregui, F. J.

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

Arzi, E.

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “Smart textile plasmonic fiber dew sensors,” Opt. Express 23(11), 14981–14992 (2015).
[Crossref] [PubMed]

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

Auza, F.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevill, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. J. 3, 67–72 (2000).

Bedoya, M.

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

Breglio, G.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Brynda, E.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Buontempo, S.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Buosciolo, A.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Carlos, L. D.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Chen, H.

Consales, M.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Correia, S. F. H.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Cusano, A.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Cutolo, A.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Díaz, I.

J. Senosiain, I. Díaz, A. Gastón, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50(6), 1656–1660 (2001).
[Crossref]

Diez, M. T.

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

Ebendorff-Heidepriem, H.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Eskridge, R. E.

W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
[Crossref]

Esmaeilzadeh, H.

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “Smart textile plasmonic fiber dew sensors,” Opt. Express 23(11), 14981–14992 (2015).
[Crossref] [PubMed]

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Farrell, G.

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

Ferreira, R. A. S.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

François, A.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Gaston, A.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevill, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. J. 3, 67–72 (2000).

Gastón, A.

J. Senosiain, I. Díaz, A. Gastón, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50(6), 1656–1660 (2001).
[Crossref]

Giordano, M.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Goicoechea, J.

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

Gordon, N. T.

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

Grattan, K. T. V.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

Gupta, B. D.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Hassani, A.

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “Smart textile plasmonic fiber dew sensors,” Opt. Express 23(11), 14981–14992 (2015).
[Crossref] [PubMed]

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

Homola, J.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(3), 401–405 (1995).
[Crossref]

Irace, A.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Jia, P.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Klantsataya, E.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Kolpakov, S. A.

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

Lee, C. Y.

C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–14 (2005).
[Crossref]

Lee, G. B.

C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–14 (2005).
[Crossref]

Légaré, F.

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “Smart textile plasmonic fiber dew sensors,” Opt. Express 23(11), 14981–14992 (2015).
[Crossref] [PubMed]

Lei, H.

Li, B.

Lima, P. P.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Liu, H. L.

M. H. Yang, H. L. Liu, D. H. Zhang, and X. L. Tong, “Hydrogen sensing performance comparison of Pd layer and Pd/WO 3composite thin film coated on side-polished single- and multimode fibers,” Sens. Actuators B Chem. 149(1), 161–164 (2010).
[Crossref]

Liu, Y.

Lozano, I.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevill, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. J. 3, 67–72 (2000).

Mathew, J.

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

Monro, T. M.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Moreno-Bondi, M. C.

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

Mou, C.

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

Orellana, G.

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

Pecoraro, E.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Pelayo, J.

F. Villuendas and J. Pelayo, “Optical fibre device for chemical sensing based on surface plasmon excitridon,” Sens. Actuators A Phys. 23(1-3), 1142–1145 (1990).
[Crossref]

Perez, F.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevill, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. J. 3, 67–72 (2000).

Petagna, P.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Rittersma, Z. M.

Z. M. Rittersma, “Recent achievements in miniaturized humidity sensors—a review of transduction techniques,” Sens. Actuators A Phys. 96(3), 196–210 (2002).
[Crossref]

Rivard, M.

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “Smart textile plasmonic fiber dew sensors,” Opt. Express 23(11), 14981–14992 (2015).
[Crossref] [PubMed]

Rivero, P. J.

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

Semenova, Y.

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

Senosiain, J.

J. Senosiain, I. Díaz, A. Gastón, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50(6), 1656–1660 (2001).
[Crossref]

Sevill, J.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevill, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. J. 3, 67–72 (2000).

Sevilla, J.

J. Senosiain, I. Díaz, A. Gastón, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50(6), 1656–1660 (2001).
[Crossref]

Sharma, A. K.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Slavík, R.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Song, J.

Sun, T.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tong, X. L.

M. H. Yang, H. L. Liu, D. H. Zhang, and X. L. Tong, “Hydrogen sensing performance comparison of Pd layer and Pd/WO 3composite thin film coated on side-polished single- and multimode fibers,” Sens. Actuators B Chem. 149(1), 161–164 (2010).
[Crossref]

Urrutia, A.

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

Varum, H.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Venugopalan, T.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

Villuendas, F.

F. Villuendas and J. Pelayo, “Optical fibre device for chemical sensing based on surface plasmon excitridon,” Sens. Actuators A Phys. 23(1-3), 1142–1145 (1990).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Yang, M. H.

M. H. Yang, H. L. Liu, D. H. Zhang, and X. L. Tong, “Hydrogen sensing performance comparison of Pd layer and Pd/WO 3composite thin film coated on side-polished single- and multimode fibers,” Sens. Actuators B Chem. 149(1), 161–164 (2010).
[Crossref]

Yeo, T. L.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

Zhang, D. H.

M. H. Yang, H. L. Liu, D. H. Zhang, and X. L. Tong, “Hydrogen sensing performance comparison of Pd layer and Pd/WO 3composite thin film coated on side-polished single- and multimode fibers,” Sens. Actuators B Chem. 149(1), 161–164 (2010).
[Crossref]

Zhang, Y.

Zhou, K.

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

IEEE Sens. J. (2)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevill, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. J. 3, 67–72 (2000).

IEEE Sensors (1)

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

J. Senosiain, I. Díaz, A. Gastón, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50(6), 1656–1660 (2001).
[Crossref]

J. Appl. Meteorol. (1)

W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
[Crossref]

J. Lightwave Technol. (1)

Measurement (1)

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

Opt. Express (2)

Sens. Actuators A Phys. (5)

Z. M. Rittersma, “Recent achievements in miniaturized humidity sensors—a review of transduction techniques,” Sens. Actuators A Phys. 96(3), 196–210 (2002).
[Crossref]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

F. Villuendas and J. Pelayo, “Optical fibre device for chemical sensing based on surface plasmon excitridon,” Sens. Actuators A Phys. 23(1-3), 1142–1145 (1990).
[Crossref]

H. Esmaeilzadeh, M. Rivard, E. Arzi, F. Légaré, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

Sens. Actuators B Chem. (5)

M. H. Yang, H. L. Liu, D. H. Zhang, and X. L. Tong, “Hydrogen sensing performance comparison of Pd layer and Pd/WO 3composite thin film coated on side-polished single- and multimode fibers,” Sens. Actuators B Chem. 149(1), 161–164 (2010).
[Crossref]

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(3), 401–405 (1995).
[Crossref]

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

Sens. Lett. (1)

C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–14 (2005).
[Crossref]

Sensors (Basel) (3)

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

S. A. Kolpakov, N. T. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors (Basel) 14(3), 3986–4013 (2014).
[Crossref] [PubMed]

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Other (1)

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (John Wiley and Sons, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Side view of the fiber optic humidity sensor, where the SPR probe senses moisture that condenses on top of the gold layer coated on the side-polished surface. (b) Top view microscopic image of the sensing area in our sensor, where the surface is wet due to the drop-wise condensation of water molecules in the adjacent air.
Fig. 2
Fig. 2 (a) Theoretical dependence of water vapor condensation rate on ambient RH, obtained using Eq. (3), with fixed ambient temperatures of 10°C, 20°C, 30°C, 40°C, and 50°C. (b) Dependence of water vapor condensation rate on ambient temperature with ambient RHs of 30%, 40%, and 50%.
Fig. 3
Fig. 3 Scheme of our experimental setup including a light source (red LED), a sensor, an environmental chamber, and a control and DAQ module. The conditioning module consisted of a heater, an ultrasonic air humidifier, an air dryer, and a thermoelectric cooler.
Fig. 4
Fig. 4 Real-time measurements obtained inside the environmental chamber: ambient RH measured by the reference humidity sensor (dotted-dashed green curve); Ts (dotted black curve), ambient temperature (double-dashed orange curve), transmitted light signal (solid blue curve), and Tdew (dashed red curve).
Fig. 5
Fig. 5 Comparison between estimated (filled-in red circles) and reference (black squares) RHs inside the chamber.
Fig. 6
Fig. 6 Real-time measurements obtained by the sensor inside the environmental chamber for the interval time from 1300 s to 1400 s.
Fig. 7
Fig. 7 (a) Transmitted light intensity reduction during moisture formation, which demonstrates that the slope, i.e., the condensation rate, increases significantly as the ambient RH increases. (b) Dependence of transmission reduction rate on the ambient RH at two different ambient temperatures.
Fig. 8
Fig. 8 Transmitted light intensity during moisture formation at temperatures of 10°C, 20°C, 30°C, and 40°C when the ambient RH was fixed near 30%. The inset shows an approximately linear relationship between the transmission reduction rate and the ambient temperature.
Fig. 9
Fig. 9 Response of the proposed sensor to human breath exposure when placed at different distances from the mouth of a person. The dashed black curve represents the response of a commercial humidity sensor when used in the same conditions as the proposed sensor.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

m ˙ = h eff A s ( T dew T s ) h fg ,
T dew = 243.04[ ln( RH 100 )+ 17.62T 243.04+T ] 17.62ln( RH 100 )+ 17.62T 243.04+T .
m ˙ = h eff A s h fg [ 243.04[ ln( RH 100 )+ 17.62T 243.04+T ] 17.62ln( RH 100 )+ 17.62T 243.04+T T s ].

Metrics