Abstract

Surface control of large-aperture transmission optics in both on-line working, and off-line testing, states is perceived as one of the most important requirements, and the largest engineering challenge, in high-power solid-state laser facilities. Consequently, a surface control apparatus and method was proposed based on the self-flexible force-moment technology and principle of load linearity, respectively. A series of analyses were conducted using the proposed apparatus and method both mechanically and numerically. Furthermore, the principle of phase mismatch induced by distortion and second harmonic generation (SHG) efficiency was analysed theoretically. Finally, the trends of the surface RMS value and efficiency under different load regimes on certain loading states were deduced, and the trends in the best surface RMS value and efficiency of each loading state were analysed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bio-inspired surface aberration mitigation technique for high-frequency conversion efficiency of large-aperture nonlinear optics

Zheng Zhang, Lang Ye, Dongya Chu, Guoqing Pei, Weifeng Du, Tianye Liu, Hui Wang, and Xu Xu
Opt. Express 27(20) 27962-27978 (2019)

Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics

Ruifeng Su, Haitao Liu, Yingchun Liang, and Lihua Lu
Appl. Opt. 53(2) 283-290 (2014)

Mechanical sensitivity analysis and optimization of a large-aperture KDP frequency converter for higher SHG efficiency

Zhang Zheng, Ye Lang, Du Weifeng, Liu Tianye, Tian Menjiya, Li Yongjie, Wang Hui, and Xu Xu
Appl. Opt. 58(9) 2205-2215 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “Conceptual design of the National Ignition Facility,” Proc. SPIE 2633, 2–12 (1995).
    [Crossref]
  2. N. Fleurot, C. Cavailler, and J. L. Bourgade, “The Laser Megajoule (LMJ) Project dedicated to inertial confinement fusion: development and construction status,” Fusion Eng. Des. 74(1), 147–154 (2005).
    [Crossref]
  3. Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
    [Crossref]
  4. L. H. Zheng, C. H. Rao, N. T. Gu, L. H. Huang, and Q. Qiu, “Influence of wavefront aberration on the imaging performance of the solar grating spectrometer,” Opt. Express 24(1), 153–167 (2016).
    [Crossref] [PubMed]
  5. J. S. Shin, Y.-H. Cha, B. H. Cha, H. C. Lee, H. T. Kim, and J. H. Lee, “Simulation of the wavefront distorting and beam quality for a high-power zigzag slab laser,” Opt. Commun. 380, 446–451 (2016).
    [Crossref]
  6. F. L. Zhang, Y. H. Wang, M. Z. Sun, Q. Y. Bi, X. L. Xie, and Z. Q. Lin, “Numerical simulations of the impact wavefront phase distortions of pump on the beam quality of OPA,” Chin. Opt. Lett. 8(2), 217–220 (2010).
    [Crossref]
  7. L. Huang, X. Ma, Q. Bian, T. Li, C. Zhou, and M. Gong, “High-precision system identification method for a deformable mirror in wavefront control,” Appl. Opt. 54(14), 4313–4317 (2015).
    [Crossref] [PubMed]
  8. R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
    [Crossref]
  9. D. Wanjun, H. Dongxia, Z. Wei, Z. Junpu, J. Feng, Y. Zeping, Z. Kun, J. Xuejun, D. Wu, Z. Runchang, P. Zhitao, and F. Bin, “Beam wavefront control of a thermal inertia laser for inertial confinement fusion application,” Appl. Opt. 48(19), 3691–3694 (2009).
    [Crossref] [PubMed]
  10. S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20(5), 5178–5188 (2012).
    [Crossref] [PubMed]
  11. Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
    [Crossref]
  12. H. Chen, L. Hou, and X. Zhou, “Active compensation of wavefront aberrations by controllable heating of lens with electric film heater matrix,” Appl. Opt. 55(24), 6634–6638 (2016).
    [Crossref] [PubMed]
  13. B. Canuel, R. Day, E. Genin, P. L. Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Class. Quantum Gravity 29(8), 085012 (2012).
    [Crossref]
  14. V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
    [Crossref]
  15. V. A. Banakh and I. N. Smalikho, “Compensation of aberration distortions of a laser beam wavefront in the bistatic location scheme,” Opt. Spectrosc. 117(6), 976–982 (2014).
    [Crossref]
  16. A. Haber, A. Polo, I. Maj, S. F. Pereira, H. P. Urbach, and M. Verhaegen, “Predictive control of thermally induced wavefront aberrations,” Opt. Express 21(18), 21530–21541 (2013).
    [Crossref] [PubMed]
  17. S. C. West, S. H. Bailey, J. H. Burge, B. Cuerden, J. Hagen, H. M. Martin, and M. T. Tuell, “Wavefront control of the large optics test and integration site (LOTIS) 6.5m collimator,” Appl. Opt. 49(18), 3522–3537 (2010).
    [Crossref] [PubMed]
  18. Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
    [Crossref]
  19. Y. C. Liang, R. F. Su, H. T. Liu, and L. H. Lu, “Analysis of torque mounting configuration for nonlinear optics with large aperture,” Opt. Laser Technol. 58, 185–193 (2014).
    [Crossref]
  20. P. X. Ye, Nonlinear Optics (Sci. Technol. China, 1998).
  21. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  22. Z. H. Shan, Mechanics of Material (National Defense Industry, 1986).

2016 (3)

2015 (3)

V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
[Crossref]

L. Huang, X. Ma, Q. Bian, T. Li, C. Zhou, and M. Gong, “High-precision system identification method for a deformable mirror in wavefront control,” Appl. Opt. 54(14), 4313–4317 (2015).
[Crossref] [PubMed]

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

2014 (2)

Y. C. Liang, R. F. Su, H. T. Liu, and L. H. Lu, “Analysis of torque mounting configuration for nonlinear optics with large aperture,” Opt. Laser Technol. 58, 185–193 (2014).
[Crossref]

V. A. Banakh and I. N. Smalikho, “Compensation of aberration distortions of a laser beam wavefront in the bistatic location scheme,” Opt. Spectrosc. 117(6), 976–982 (2014).
[Crossref]

2013 (3)

A. Haber, A. Polo, I. Maj, S. F. Pereira, H. P. Urbach, and M. Verhaegen, “Predictive control of thermally induced wavefront aberrations,” Opt. Express 21(18), 21530–21541 (2013).
[Crossref] [PubMed]

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

2012 (2)

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20(5), 5178–5188 (2012).
[Crossref] [PubMed]

B. Canuel, R. Day, E. Genin, P. L. Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Class. Quantum Gravity 29(8), 085012 (2012).
[Crossref]

2010 (2)

2009 (1)

2005 (1)

N. Fleurot, C. Cavailler, and J. L. Bourgade, “The Laser Megajoule (LMJ) Project dedicated to inertial confinement fusion: development and construction status,” Fusion Eng. Des. 74(1), 147–154 (2005).
[Crossref]

2004 (1)

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

1995 (1)

J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “Conceptual design of the National Ignition Facility,” Proc. SPIE 2633, 2–12 (1995).
[Crossref]

Arnold, T. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Bailey, S. H.

Banakh, V. A.

V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
[Crossref]

V. A. Banakh and I. N. Smalikho, “Compensation of aberration distortions of a laser beam wavefront in the bistatic location scheme,” Opt. Spectrosc. 117(6), 976–982 (2014).
[Crossref]

Beer, N. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Bi, Q. Y.

Bian, Q.

Bin, F.

Bliss, E. S.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Bonora, S.

Bortolozzo, U.

Bourgade, J. L.

N. Fleurot, C. Cavailler, and J. L. Bourgade, “The Laser Megajoule (LMJ) Project dedicated to inertial confinement fusion: development and construction status,” Fusion Eng. Des. 74(1), 147–154 (2005).
[Crossref]

Boyes, J. D.

J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “Conceptual design of the National Ignition Facility,” Proc. SPIE 2633, 2–12 (1995).
[Crossref]

Burge, J. H.

Burkhart, S. C.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Canuel, B.

B. Canuel, R. Day, E. Genin, P. L. Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Class. Quantum Gravity 29(8), 085012 (2012).
[Crossref]

Cao, T. F.

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

Cavailler, C.

N. Fleurot, C. Cavailler, and J. L. Bourgade, “The Laser Megajoule (LMJ) Project dedicated to inertial confinement fusion: development and construction status,” Fusion Eng. Des. 74(1), 147–154 (2005).
[Crossref]

Cha, B. H.

J. S. Shin, Y.-H. Cha, B. H. Cha, H. C. Lee, H. T. Kim, and J. H. Lee, “Simulation of the wavefront distorting and beam quality for a high-power zigzag slab laser,” Opt. Commun. 380, 446–451 (2016).
[Crossref]

Cha, Y.-H.

J. S. Shin, Y.-H. Cha, B. H. Cha, H. C. Lee, H. T. Kim, and J. H. Lee, “Simulation of the wavefront distorting and beam quality for a high-power zigzag slab laser,” Opt. Commun. 380, 446–451 (2016).
[Crossref]

Chen, H.

Chen, Y. B.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Coburn, D.

Cohen, S. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Cuerden, B.

Dainty, C.

Dang, Z.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Day, R.

B. Canuel, R. Day, E. Genin, P. L. Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Class. Quantum Gravity 29(8), 085012 (2012).
[Crossref]

Deng, X. W.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Ding, L.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Dongxia, H.

Feng, B.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Feng, J.

Feng, Z. X.

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Fleurot, N.

N. Fleurot, C. Cavailler, and J. L. Bourgade, “The Laser Megajoule (LMJ) Project dedicated to inertial confinement fusion: development and construction status,” Fusion Eng. Des. 74(1), 147–154 (2005).
[Crossref]

Genin, E.

B. Canuel, R. Day, E. Genin, P. L. Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Class. Quantum Gravity 29(8), 085012 (2012).
[Crossref]

Gong, M.

Gong, M. L.

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Gu, N. T.

Guo, L. F.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Haber, A.

Hagen, J.

Hou, L.

Hu, D. X.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Huang, L.

L. Huang, X. Ma, Q. Bian, T. Li, C. Zhou, and M. Gong, “High-precision system identification method for a deformable mirror in wavefront control,” Appl. Opt. 54(14), 4313–4317 (2015).
[Crossref] [PubMed]

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Huang, L. H.

Ignatiev, A. B.

V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
[Crossref]

Jin, G. F.

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Jing, F.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Junpu, Z.

Kim, H. T.

J. S. Shin, Y.-H. Cha, B. H. Cha, H. C. Lee, H. T. Kim, and J. H. Lee, “Simulation of the wavefront distorting and beam quality for a high-power zigzag slab laser,” Opt. Commun. 380, 446–451 (2016).
[Crossref]

Kumpan, S. A.

J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “Conceptual design of the National Ignition Facility,” Proc. SPIE 2633, 2–12 (1995).
[Crossref]

Kun, Z.

Latea, M. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Lee, H. C.

J. S. Shin, Y.-H. Cha, B. H. Cha, H. C. Lee, H. T. Kim, and J. H. Lee, “Simulation of the wavefront distorting and beam quality for a high-power zigzag slab laser,” Opt. Commun. 380, 446–451 (2016).
[Crossref]

Lee, J. H.

J. S. Shin, Y.-H. Cha, B. H. Cha, H. C. Lee, H. T. Kim, and J. H. Lee, “Simulation of the wavefront distorting and beam quality for a high-power zigzag slab laser,” Opt. Commun. 380, 446–451 (2016).
[Crossref]

Li, T.

Li, T. H.

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Liang, Y. C.

Y. C. Liang, R. F. Su, H. T. Liu, and L. H. Lu, “Analysis of torque mounting configuration for nonlinear optics with large aperture,” Opt. Laser Technol. 58, 185–193 (2014).
[Crossref]

Lin, D. H.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Lin, Z. Q.

Liu, H. T.

Y. C. Liang, R. F. Su, H. T. Liu, and L. H. Lu, “Analysis of torque mounting configuration for nonlinear optics with large aperture,” Opt. Laser Technol. 58, 185–193 (2014).
[Crossref]

Liu, L. Q.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Lowdermilk, W. H.

J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “Conceptual design of the National Ignition Facility,” Proc. SPIE 2633, 2–12 (1995).
[Crossref]

Lu, L. H.

Y. C. Liang, R. F. Su, H. T. Liu, and L. H. Lu, “Analysis of torque mounting configuration for nonlinear optics with large aperture,” Opt. Laser Technol. 58, 185–193 (2014).
[Crossref]

Ma, G. H.

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

Ma, X.

Maj, I.

Marque, J.

B. Canuel, R. Day, E. Genin, P. L. Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Class. Quantum Gravity 29(8), 085012 (2012).
[Crossref]

Martin, H. M.

Morozov, V. V.

V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
[Crossref]

Paisner, J. A.

J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “Conceptual design of the National Ignition Facility,” Proc. SPIE 2633, 2–12 (1995).
[Crossref]

Peng, Z. T.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Penna, P. L.

B. Canuel, R. Day, E. Genin, P. L. Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Class. Quantum Gravity 29(8), 085012 (2012).
[Crossref]

Pereira, S. F.

Pigg, D. C.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Polo, A.

Qiu, Q.

Qiu, Y. T.

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Rao, C. H.

Razenkov, I. A.

V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
[Crossref]

Residori, S.

Rostov, A. P.

V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
[Crossref]

Runchang, Z.

Salmon, J. T.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Shin, J. S.

J. S. Shin, Y.-H. Cha, B. H. Cha, H. C. Lee, H. T. Kim, and J. H. Lee, “Simulation of the wavefront distorting and beam quality for a high-power zigzag slab laser,” Opt. Commun. 380, 446–451 (2016).
[Crossref]

Smalikho, I. N.

V. A. Banakh and I. N. Smalikho, “Compensation of aberration distortions of a laser beam wavefront in the bistatic location scheme,” Opt. Spectrosc. 117(6), 976–982 (2014).
[Crossref]

Sorem, M. S.

J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “Conceptual design of the National Ignition Facility,” Proc. SPIE 2633, 2–12 (1995).
[Crossref]

Stolz, C. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Su, R. F.

Y. C. Liang, R. F. Su, H. T. Liu, and L. H. Lu, “Analysis of torque mounting configuration for nonlinear optics with large aperture,” Opt. Laser Technol. 58, 185–193 (2014).
[Crossref]

Sun, M. Z.

Sutton, S. B.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Tsvyk, R. S.

V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
[Crossref]

Tuell, M. T.

Urbach, H. P.

Vanttta, R. L.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Verhaegen, M.

Wang, H.

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

Wang, J. J.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Wang, Y. H.

Wanjun, D.

Wei, X. F.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Wei, Z.

West, S. C.

Winters, S. E.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Wu, D.

Xie, X. L.

Xiong, Z.

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

Xue, Q.

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Xuejun, J.

Yan, D.

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Yao, C.

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

Yuan, X. D.

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

Zacharias, R. A.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Zeping, Y.

Zhang, F. L.

Zhang, Z.

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

Zheng, L. H.

Zheng, W. G.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Zhitao, P.

Zhmylevskii, V. V.

V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
[Crossref]

Zhou, C.

Zhou, M. X.

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

Zhou, W.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Zhou, X.

Zhu, Q. H.

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

Adv. Mech. Eng. (1)

Z. Xiong, H. Wang, T. F. Cao, X. D. Yuan, C. Yao, Z. Zhang, M. X. Zhou, and G. H. Ma, “Error analysis on assembly and alignment of laser optical unit,” Adv. Mech. Eng. 7(7), 1–10 (2015).
[Crossref]

Appl. Opt. (4)

Chin. Opt. Lett. (1)

Class. Quantum Gravity (1)

B. Canuel, R. Day, E. Genin, P. L. Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Class. Quantum Gravity 29(8), 085012 (2012).
[Crossref]

Fusion Eng. Des. (1)

N. Fleurot, C. Cavailler, and J. L. Bourgade, “The Laser Megajoule (LMJ) Project dedicated to inertial confinement fusion: development and construction status,” Fusion Eng. Des. 74(1), 147–154 (2005).
[Crossref]

Laser Phys. Lett. (1)

Q. Xue, L. Huang, D. Yan, M. L. Gong, Y. T. Qiu, T. H. Li, Z. X. Feng, and G. F. Jin, “Structure and closed-loop control of a novel compact deformable mirror for wavefront correction in a high power laser system,” Laser Phys. Lett. 10(4), 045301 (2013).
[Crossref]

Opt. Commun. (1)

J. S. Shin, Y.-H. Cha, B. H. Cha, H. C. Lee, H. T. Kim, and J. H. Lee, “Simulation of the wavefront distorting and beam quality for a high-power zigzag slab laser,” Opt. Commun. 380, 446–451 (2016).
[Crossref]

Opt. Eng. (1)

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Vanttta, S. E. Winters, J. T. Salmon, M. R. Latea, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

Y. C. Liang, R. F. Su, H. T. Liu, and L. H. Lu, “Analysis of torque mounting configuration for nonlinear optics with large aperture,” Opt. Laser Technol. 58, 185–193 (2014).
[Crossref]

Opt. Spectrosc. (1)

V. A. Banakh and I. N. Smalikho, “Compensation of aberration distortions of a laser beam wavefront in the bistatic location scheme,” Opt. Spectrosc. 117(6), 976–982 (2014).
[Crossref]

Proc. SPIE (2)

Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, Z. Dang, and X. W. Deng, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013).
[Crossref]

J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “Conceptual design of the National Ignition Facility,” Proc. SPIE 2633, 2–12 (1995).
[Crossref]

Quantum Electron. (1)

V. A. Banakh, V. V. Zhmylevskii, A. B. Ignatiev, V. V. Morozov, I. A. Razenkov, A. P. Rostov, and R. S. Tsvyk, “Optical beam wavefront control based on the atmospheric backscatter signal,” Quantum Electron. 45(2), 153–160 (2015).
[Crossref]

Other (3)

P. X. Ye, Nonlinear Optics (Sci. Technol. China, 1998).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Z. H. Shan, Mechanics of Material (National Defense Industry, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical configuration.
Fig. 2
Fig. 2 Mechanical configuration.
Fig. 3
Fig. 3 Distortion conditions for different beams (a) cantilever, and (b) double beam.
Fig. 4
Fig. 4 The distribution of each support block and load module.
Fig. 5
Fig. 5 The finite element model.
Fig. 6
Fig. 6 The loading modes of (a) force, (b) moment, and (c) force and moment.
Fig. 7
Fig. 7 Optical deformation in loading modes (a) uniform distributed force, (b) free distributed force, (c) uniform distributed force and moment, and (d) free distributed force and moment.
Fig. 8
Fig. 8 Optical deformation of (a) target surface, (b) best surface under 1.0F, (c) best surface under 1.0[F], (d) best surface under 1.0M, and (e) best surface under 1.0[M].
Fig. 9
Fig. 9 Efficiency in modes (a) uniform distributed force, (b) free distributed force, (c) uniform distributed force and moment, and (d) free distributed force and moment.
Fig. 10
Fig. 10 Distortion-induced efficiency under four load regimes.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

{ n 1 (ω,θ)= n 2 (ω,θ)= n o (ω) n 3 (2ω,θ)= n e (2ω,θ)= [ n o 2 (2ω) n e 2 (2ω) n o 2 (2ω) sin 2 θ+ n e 2 (2ω) cos 2 θ ] 1/2
n o (ω)= n e (2ω,θ)
sin 2 θ m = n e 2 (2ω)[ n o 2 (2ω) n o 2 (ω)] n o 2 (2ω)[ n o 2 (2ω) n e 2 (2ω)]
ΔK= K 3 ( K 2 + K 1 )= ω 3 n 3 ( ω 3 ,θ) /c ω 2 n 2 ( ω 2 ,θ) /c ω 1 n 1 ( ω 1 ,θ) /c
ΔK=ΔK| θ= θ m + ΔK θ | θ= θ m Δθ+ 1 2 2 ΔK θ 2 | θ= θ m (Δθ) 2 +
ΔK= ΔK θ | θ= θ m Δθ
dΔK dθ = 1 2 ω 3 c n 3 3 ( ω 3 ,θ) 3 [ n e 2 (2ω) n o 2 (2ω)]sin(2θ)
ΔK= 1 2 ω 3 c n 3 3 ( ω 3 ,θ) 3 [ n e 2 (2ω) n o 2 (2ω)]sin(2θ)| θ= θ m Δθ
{ dE(2ω,z) dz = 2i ω 2 k 2ω c 2 χ eff (2) E 2 (ω,z) e iΔkz dE(ω,z) dz = i ω 2 k ω c 2 χ eff (2) E(2ω,z) E * (ω,z) e iΔkz
{ η= P 2 P 1 P 1 = 1 2 n 1o C ε 0 | E 1 | 2 P 2 = 1 2 n 2e C ε 0 | E 2 | 2
x o =[ x o1 x o2 x on ]
[ x FA x FB x FH ]=[ x FA1 x FA2 x FAn x FB1 x FB2 x FBn x FH1 x FH2 x FHn ]
[ x MA x MB x MH ]=[ x MA1 x MA2 x MAn x MB1 x MB2 x MBn x MH1 x MH2 x MHn ]
x T =[ x T1 x T2 x Tn ]
x C =a1* x F1 +a2* x M1 +b1* x F2 +b2* x M2 h1* x F8 +h2* x M8 + x 0
Δx= x C x T
[ E XX E YY E ZZ E YZ E XZ E XY ]=[ 71.2 5.0 14.1 0 0 0 5.0 71.2 14.1 0 0 0 14.1 14.1 56.8 0 0 0 0 0 0 12.6 0 0 0 0 0 0 12.6 0 0 0 0 0 0 6.22 ]

Metrics