Abstract

A novel UV-VIS-NIR imaging spectrometer prototype has been presented for the remote sensing of the coastal ocean by air. The concept is proposed for the needs of the observation. An advanced design has been demonstrated based on the Dyson spectrometer in details. The analysis and tests present excellent optical performances in the spectral broadband, easy and low cost fabrication and alignment, low inherent stray light, and high signal to noise ratio. The research provides an easy method for the coastal ocean observation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stigmatic broadband imaging spectrometer with a high numerical aperture

Lei Yu, Hui Xue, and Jiexiang Chen
Appl. Opt. 57(10) 2414-2419 (2018)

Portable Remote Imaging Spectrometer coastal ocean sensor: design, characteristics, and first flight results

Pantazis Mouroulis, Byron Van Gorp, Robert O. Green, Heidi Dierssen, Daniel W. Wilson, Michael Eastwood, Joseph Boardman, Bo-Cai Gao, David Cohen, Brian Franklin, Frank Loya, Sarah Lundeen, Alan Mazer, Ian McCubbin, David Randall, Brandon Richardson, Jose I. Rodriguez, Charles Sarture, Eugenio Urquiza, Rudolph Vargas, Victor White, and Karl Yee
Appl. Opt. 53(7) 1363-1380 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization imaging,” Appl. Opt. 52(10), 2153–2161 (2013).
    [Crossref] [PubMed]
  2. J. Dyson, “Unit magnification optical system without Seidel aberrations,” J. Opt. Soc. Am. 49(7), 713–715 (1959).
    [Crossref]
  3. L. Mertz, “Concentric spectrographs,” Appl. Opt. 16(12), 3122–3124 (1977).
    [Crossref] [PubMed]
  4. C. Davis, J. Bowles, R. Leathers, D. Korwan, T. V. Downes, W. Snyder, W. Rhea, W. Chen, J. Fisher, P. Bissett, and R. A. Reisse, “Ocean PHILLS hyperspectral imager: design, characterization, and calibration,” Opt. Express 10(4), 210–221 (2002).
    [Crossref] [PubMed]
  5. C. Simi and E. Reith, “The Mapping Reflected-energy Sensor-MaRS: a New Level of Hyperspectral Technology,” Proc. SPIE 7457, 745703 (2009).
  6. P. Mouroulis, B. E. Van Gorp, R. O. Green, M. Eastwood, D. W. Wilson, B. Richardson, and H. Dierssen, “The portable remote imaging spectrometer (PRISM) coastal ocean sensor,” in Imaging Appl. Opt. Technical Digest (OSA, 2012).
  7. C. Montero-Orille, X. Prieto-Blanco, H. González-Núñez, and R. de la Fuente, “Two-wavelength anastigmatic Dyson imaging spectrometers,” Opt. Lett. 35(14), 2379–2381 (2010).
    [Crossref] [PubMed]
  8. C. Montero-Orille, X. Prieto-Blanco, H. González-Núñez, and R. de la Fuente, “Design of Dyson imaging spectrometers based on the Rowland circle concept,” Appl. Opt. 50(35), 6487–6494 (2011).
    [Crossref] [PubMed]
  9. C. G. Wynne, “Monocentric telescopes for microlithography,” Opt. Eng. 26(4), 300–303 (1987).
    [Crossref]
  10. Y. Zhang and Z. Wang, “Some developments for a unit magnification catadioptric optical system,” Appl. Opt. 34(7), 1203–1208 (1995).
    [Crossref] [PubMed]
  11. D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometer for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
    [Crossref]
  12. L. Pei, B. Xiangli, Q. Lv, and X. Shao, “Optical system design of the Dyson imaging spectrometer based on the Fery prism,” Opt. Rev. 23(4), 695–702 (2016).
    [Crossref]
  13. P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
    [Crossref] [PubMed]
  14. P. Mouroulis, R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
    [Crossref]
  15. P. Bontempi, Earth's Living Ocean: 'The Unseen World': An advanced plan for NASA's Ocean Biology and Biogeochemistry Research, NASA, 2006.
  16. T. Cui, J. Zhang, J. Tang, Y. Ma, and S. Qing, “Satellite retrieval of inherent optical properties in the turbid waters of the Yellow Sea and the East China Sea,” Chin. Opt. Lett. 8(8), 721–725 (2010).
    [Crossref]
  17. D. R. Lobb, “Theory of concentric designs for grating spectrometers,” Appl. Opt. 33(13), 2648–2658 (1994).
    [Crossref] [PubMed]
  18. M. Laikin, Lens design, 4th ed. (Academic, Taylor & Francis Group, 2006), Chap. 3.

2016 (2)

L. Pei, B. Xiangli, Q. Lv, and X. Shao, “Optical system design of the Dyson imaging spectrometer based on the Fery prism,” Opt. Rev. 23(4), 695–702 (2016).
[Crossref]

P. Mouroulis, R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

2013 (1)

2011 (1)

2010 (2)

2009 (1)

C. Simi and E. Reith, “The Mapping Reflected-energy Sensor-MaRS: a New Level of Hyperspectral Technology,” Proc. SPIE 7457, 745703 (2009).

2008 (2)

P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
[Crossref] [PubMed]

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometer for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

2002 (1)

1995 (1)

1994 (1)

1987 (1)

C. G. Wynne, “Monocentric telescopes for microlithography,” Opt. Eng. 26(4), 300–303 (1987).
[Crossref]

1977 (1)

1959 (1)

Bender, H. A.

P. Mouroulis, R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

Bissett, P.

Bowles, J.

Brady, D. J.

Chen, W.

Cui, T.

Davis, C.

de la Fuente, R.

Downes, T. V.

Dyson, J.

Fisher, J.

González-Núñez, H.

Green, R. O.

P. Mouroulis, R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
[Crossref] [PubMed]

Gutierrez, D. J.

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometer for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

Keim, E. R.

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometer for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

Korwan, D.

Leathers, R.

Lobb, D. R.

Lv, Q.

L. Pei, B. Xiangli, Q. Lv, and X. Shao, “Optical system design of the Dyson imaging spectrometer based on the Fery prism,” Opt. Rev. 23(4), 695–702 (2016).
[Crossref]

Ma, Y.

Mertz, L.

Montero-Orille, C.

Moore, L. B.

P. Mouroulis, R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

Mouroulis, P.

P. Mouroulis, R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
[Crossref] [PubMed]

Pei, L.

L. Pei, B. Xiangli, Q. Lv, and X. Shao, “Optical system design of the Dyson imaging spectrometer based on the Fery prism,” Opt. Rev. 23(4), 695–702 (2016).
[Crossref]

Prieto-Blanco, X.

Qing, S.

Reisse, R. A.

Reith, E.

C. Simi and E. Reith, “The Mapping Reflected-energy Sensor-MaRS: a New Level of Hyperspectral Technology,” Proc. SPIE 7457, 745703 (2009).

Rhea, W.

Shao, X.

L. Pei, B. Xiangli, Q. Lv, and X. Shao, “Optical system design of the Dyson imaging spectrometer based on the Fery prism,” Opt. Rev. 23(4), 695–702 (2016).
[Crossref]

Simi, C.

C. Simi and E. Reith, “The Mapping Reflected-energy Sensor-MaRS: a New Level of Hyperspectral Technology,” Proc. SPIE 7457, 745703 (2009).

Snyder, W.

Tang, J.

Tsai, T. H.

Van Gorp, B.

P. Mouroulis, R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

Wang, Z.

Warren, D. W.

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometer for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

Wilson, D. W.

P. Mouroulis, R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
[Crossref] [PubMed]

Wynne, C. G.

C. G. Wynne, “Monocentric telescopes for microlithography,” Opt. Eng. 26(4), 300–303 (1987).
[Crossref]

Xiangli, B.

L. Pei, B. Xiangli, Q. Lv, and X. Shao, “Optical system design of the Dyson imaging spectrometer based on the Fery prism,” Opt. Rev. 23(4), 695–702 (2016).
[Crossref]

Zhang, J.

Zhang, Y.

Appl. Opt. (5)

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. (1)

Opt. Eng. (3)

C. G. Wynne, “Monocentric telescopes for microlithography,” Opt. Eng. 26(4), 300–303 (1987).
[Crossref]

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometer for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

P. Mouroulis, R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Rev. (1)

L. Pei, B. Xiangli, Q. Lv, and X. Shao, “Optical system design of the Dyson imaging spectrometer based on the Fery prism,” Opt. Rev. 23(4), 695–702 (2016).
[Crossref]

Proc. SPIE (1)

C. Simi and E. Reith, “The Mapping Reflected-energy Sensor-MaRS: a New Level of Hyperspectral Technology,” Proc. SPIE 7457, 745703 (2009).

Other (3)

P. Mouroulis, B. E. Van Gorp, R. O. Green, M. Eastwood, D. W. Wilson, B. Richardson, and H. Dierssen, “The portable remote imaging spectrometer (PRISM) coastal ocean sensor,” in Imaging Appl. Opt. Technical Digest (OSA, 2012).

P. Bontempi, Earth's Living Ocean: 'The Unseen World': An advanced plan for NASA's Ocean Biology and Biogeochemistry Research, NASA, 2006.

M. Laikin, Lens design, 4th ed. (Academic, Taylor & Francis Group, 2006), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Essential substances in the coastal ocean and spectroscopy reflection principle
Fig. 2
Fig. 2 The concept and parameters of the hyper-spectral imaging sensor
Fig. 3
Fig. 3 Optical path of the chief ray emerging from the center of the slit for an arbitrary wavelength in the advanced Dyson spectrometer. R1 is the radius of the convex surface of the hemispherical lens and Rg is the radius of the concave grating. S is the object point. IM and IS are the meridian and sagital imaging points, respectively. The common center of the convex surfaces of the hemisphere lens and the grating is O'. The angle (-i) and θ satisfy the grating equation sini + sinθ = mgλ, where m is the diffraction order as + 1, g is the grating ruling density, and λ is the selected wavelength. Astigmatism has been overstated on the right of the arrow.
Fig. 4
Fig. 4 The optical path of an arbitrary wavelength of the chief ray emerging from the center of the slit is analyzed for the advanced stigmatic Dyson spectrometer.
Fig. 5
Fig. 5 Optical layout and opto-mechanical layout of the advanced Dyson spectrometer.
Fig. 6
Fig. 6 Optimized design results simulated by ZEMAX: (a) MTF curves of 320 nm; (b) MTF curves of 660 nm; (c) MTF curves of 1000 nm; (d) RMS spots radii distribution in the waveband, (e) Field curvature in millimeters and distortion in percent (the + Y expresses the half length of the slit and the unit is mm); Different colors in (a), (b), (c), (d) and (e) stand for the marginal and central fields of view. (f) The target is the left one. The spectral imaging is on the right. These images from top to bottom are corresponding to three wavelengths at 320 nm, 660 nm and 1000 nm, respectively.
Fig. 7
Fig. 7 The tolerances setting in the software ZEMAX before the calculation. The tolerances include the material, manufacture and alignment tolerances.
Fig. 8
Fig. 8 Different orders of dispersed rays converging on the imaging plane. Three wavelengths are presented: 320 nm (blue), 660 nm (green), 1000 nm (red)
Fig. 9
Fig. 9 (a) QE curves of the type of 4720 series of CCD detectors with three different coatings. We used the broadband coated one shown in the middle cash. (b) SNR curve simulation of our spectrometer in the waveband.
Fig. 10
Fig. 10 Spectrometer prototype: (a) Optical elements, (b) Prototype, (c) CCD detector electronics
Fig. 11
Fig. 11 Spectral resolution of the prototype: (a) the slit image of the mercury lamp with isolated accurate spectral lines. (b) The radiation intensity in data of picture (a).
Fig. 12
Fig. 12 Monochromatic images of the USAF resolution test target at three different wavelengths. (a) 440 nm, (b) 550 nm, and (c) 630 nm
Fig. 13
Fig. 13 Imaging of the Far vision.

Tables (4)

Tables Icon

Table 1 Characteristic bands of the coastal ocean observation

Tables Icon

Table 2 Characteristics of the spectrometer (including the telescope).

Tables Icon

Table 3 Worst offenders influencing the optical system in the tolerance analysis

Tables Icon

Table 4 Comparison of primary specifications.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R(λ)=( L O r L S ) ρ P / L P π
( d/cosγ )/ R g +( d'/cosγ )/ R g =gλ
γ=ψ'ψ+i
{ ψ= tan 1 ( d R 1 ),andψ'= sin 1 ( nsin[ tan 1 ( d R 1 ) ] ) φ= sin 1 ( n d' R 1 ),andφ'= sin 1 ( d' R 1 )
d'=gλ R g cosγ+d
R g sin( 180 ψ') = R 1 sin(i)
{ i= sin 1 ( R 1 R g ( nsin[ tan 1 ( d R 1 ) ] ) ) θ= sin 1 ( gλ+ R 1 R g ( nsin[ tan 1 ( d R 1 ) ] ) )
ψψ'i+θ+φ'φ=0
Φ lens =(n1)( 1 R lens1 1 R lens2 )
Φ o = Φ n + Φ 1 + Φ 2 Δ n,1 Φ n ( Φ 1 + Φ 2 ) Δ 1,2 Φ 2 ( Φ n + Φ 1 )+ Δ n,1 Δ 1,2 Φ n Φ 1 Φ 2
N c = 2 (k+ m1 6 )

Metrics