Abstract

Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from the center of the inhomogeneous absorption profile, and therefore exhibits only limited interaction with the crystal despite a potentially high optical power. The demodulation and frequency corrections are generated digitally with a hardware and software implementation based on a field-programmable gate array and a Software Defined Radio platform, making it straightforward to address several frequency channels (spectral holes) in parallel.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double-heterodyne probing for an ultra-stable laser based on spectral hole burning in a rare-earth-doped crystal

N. Galland, N. Lučić, S. Zhang, H. Alvarez-Martinez, R. Le Targat, A. Ferrier, P. Goldner, B. Fang, S. Seidelin, and Y. Le Coq
Opt. Lett. 45(7) 1930-1933 (2020)

Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning

P. B. Sellin, N. M. Strickland, J. L. Carlsten, and R. L. Cone
Opt. Lett. 24(15) 1038-1040 (1999)

Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning

Thomas Böttger, G. J. Pryde, and R. L. Cone
Opt. Lett. 28(3) 200-202 (2003)

References

  • View by:
  • |
  • |
  • |

  1. M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
    [Crossref]
  2. R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
    [Crossref]
  3. C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
    [Crossref] [PubMed]
  4. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
    [Crossref]
  5. T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
    [Crossref]
  6. S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8× 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40, 2112–2115 (2015).
    [Crossref]
  7. B. P. Abbott and LIGO Scientific Collaboration and Virgo Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref] [PubMed]
  8. For gravitational wave detectors in space, see https://www.elisascience.org/
  9. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
    [Crossref]
  10. K. Numata, A. Kemery, and J. Camp, “Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities,” Phys. Rev. Lett. 93, 250602 (2004).
    [Crossref]
  11. Note that the linewidth of the transmission peak does not impact the limitation due to thermal agitation, but a narrow peak reduces strongly the impact of a wide group of technical noise (detection noise, effect of parasitic reflexions, residual amplitude modulation in a Pound-Drever-Hall (PDH) servo loop, etc.
  12. S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “A second generation of low thermal noise cryogenic silicon resonators,” Opt. Lett. 40, 2112–2115 (2015).
    [Crossref]
  13. G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
    [Crossref]
  14. E. Wiens, Q.-F. Chen, I. Ernsting, H. Luckmann, U. Rosowski, A. Nevsky, and S. Schiller, “Silicon single-crystal cryogenic optical resonator,” Opt. Lett. 39, 3242–3245 (2014).
    [Crossref] [PubMed]
  15. B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11445–11465 (2007).
    [Crossref]
  16. M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, “Frequency stabilization to 6× 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
    [Crossref]
  17. R. Yano, M. Mitsunaga, and N. Uesugi, “Ultralong optical dephasing time in Eu3+:Y2SiO5,” Opt. Lett. 16, 1884–1886 (1991).
    [Crossref] [PubMed]
  18. R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow Optical Dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
    [Crossref] [PubMed]
  19. F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
    [Crossref]
  20. Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
    [Crossref]
  21. M. J. Thorpe, D. R. Leibrandt, and T. Rosenband, “Shifts of optical frequency references based on spectral-hole burning in Eu3+:Y2SiO5,” New J. Phys.  15, 033006 (2013).
    [Crossref]
  22. S. Cook, T. Rosenband, and D. R. Leibrandt, “Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 114, 253902 (2015).
    [Crossref]
  23. D. Leibrandt, M. Thorpe, C.-W. Chou, T. Fortier, S. Diddams, and T. Rosenband, “Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 111, 237402 (2013).
    [Crossref]
  24. L. S. Ma, P. Junger, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
    [Crossref] [PubMed]
  25. The difference in powers mostly arises from the different efficiencies of the fiber coupling at 1160 nm.
  26. D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
    [Crossref]
  27. D. Leibrandt (National Institute of Standards and Technology) and W. Zhang (JILA), Boulder, Colorado (personal communication, 2016).
  28. A. Ferrier, B. Tumino, and P. Goldner, “Variations in the oscillator strength of the 7F0 −5 D0 transition in single crystals,” J. Lumin. 170, 406–410 (2016).
    [Crossref]
  29. http://gnuradio.org/
  30. B. Argence, E. Prevost, T. Lévèque, R. Le Goff, P. Lemonde, S. Bize, and G. Santarelli, “Prototype of an ultra-stable optic cavity for space applications,” Opt. Express,  20, 25409–25420 (2012).
    [Crossref] [PubMed]
  31. J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
    [Crossref]
  32. K. Mølmer, Y. Le Coq, and S. Seidelin, “Dispersive coupling between light and a rare-earth-ion-doped mechanical resonator,” Phys. Rev. A 94, 053804 (2016).
    [Crossref]

2017 (2)

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

2016 (6)

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

B. P. Abbott and LIGO Scientific Collaboration and Virgo Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref] [PubMed]

A. Ferrier, B. Tumino, and P. Goldner, “Variations in the oscillator strength of the 7F0 −5 D0 transition in single crystals,” J. Lumin. 170, 406–410 (2016).
[Crossref]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

K. Mølmer, Y. Le Coq, and S. Seidelin, “Dispersive coupling between light and a rare-earth-ion-doped mechanical resonator,” Phys. Rev. A 94, 053804 (2016).
[Crossref]

2015 (5)

S. Cook, T. Rosenband, and D. R. Leibrandt, “Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 114, 253902 (2015).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8× 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “A second generation of low thermal noise cryogenic silicon resonators,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

2014 (2)

E. Wiens, Q.-F. Chen, I. Ernsting, H. Luckmann, U. Rosowski, A. Nevsky, and S. Schiller, “Silicon single-crystal cryogenic optical resonator,” Opt. Lett. 39, 3242–3245 (2014).
[Crossref] [PubMed]

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

2013 (3)

M. J. Thorpe, D. R. Leibrandt, and T. Rosenband, “Shifts of optical frequency references based on spectral-hole burning in Eu3+:Y2SiO5,” New J. Phys.  15, 033006 (2013).
[Crossref]

D. Leibrandt, M. Thorpe, C.-W. Chou, T. Fortier, S. Diddams, and T. Rosenband, “Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 111, 237402 (2013).
[Crossref]

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

2012 (1)

2011 (2)

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, “Frequency stabilization to 6× 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
[Crossref]

2007 (1)

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11445–11465 (2007).
[Crossref]

2004 (1)

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

2003 (1)

F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

1994 (2)

1991 (1)

Abbott, B. P.

B. P. Abbott and LIGO Scientific Collaboration and Virgo Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref] [PubMed]

Abgrall, M.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Alexandre, C.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Al-Masoudi, A.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Amy-Klein, A.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Argence, B.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, P. Lemonde, S. Bize, and G. Santarelli, “Prototype of an ultra-stable optic cavity for space applications,” Opt. Express,  20, 25409–25420 (2012).
[Crossref] [PubMed]

Aspelmeyer, M.

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

Barrett, M. D.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Beloy, K.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Bilicki, S.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Bize, S.

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, P. Lemonde, S. Bize, and G. Santarelli, “Prototype of an ultra-stable optic cavity for space applications,” Opt. Express,  20, 25409–25420 (2012).
[Crossref] [PubMed]

Bloom, B. J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Bookjans, E.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Bouchand, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Brown, R. C.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Camisard, E.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Camp, J.

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Campbell, S. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Chardonnet, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Chen, Q.-F.

E. Wiens, Q.-F. Chen, I. Ernsting, H. Luckmann, U. Rosowski, A. Nevsky, and S. Schiller, “Silicon single-crystal cryogenic optical resonator,” Opt. Lett. 39, 3242–3245 (2014).
[Crossref] [PubMed]

Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
[Crossref]

Chiodo, N.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Chou, C.-W.

D. Leibrandt, M. Thorpe, C.-W. Chou, T. Fortier, S. Diddams, and T. Rosenband, “Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 111, 237402 (2013).
[Crossref]

Cole, G.

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

Cone, R. L.

F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow Optical Dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

Cook, S.

S. Cook, T. Rosenband, and D. R. Leibrandt, “Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 114, 253902 (2015).
[Crossref]

Das, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

Datta, S.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

De Sarlo, L.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

Denker, H.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Diddams, S.

D. Leibrandt, M. Thorpe, C.-W. Chou, T. Fortier, S. Diddams, and T. Rosenband, “Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 111, 237402 (2013).
[Crossref]

Dörscher, S.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Equall, R. W.

F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow Optical Dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

Ernsting, I.

E. Wiens, Q.-F. Chen, I. Ernsting, H. Luckmann, U. Rosowski, A. Nevsky, and S. Schiller, “Silicon single-crystal cryogenic optical resonator,” Opt. Lett. 39, 3242–3245 (2014).
[Crossref] [PubMed]

Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
[Crossref]

Falke, S.

Fasano, R. J.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Favier, M.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

Ferrier, A.

A. Ferrier, B. Tumino, and P. Goldner, “Variations in the oscillator strength of the 7F0 −5 D0 transition in single crystals,” J. Lumin. 170, 406–410 (2016).
[Crossref]

Fortier, T.

D. Leibrandt, M. Thorpe, C.-W. Chou, T. Fortier, S. Diddams, and T. Rosenband, “Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 111, 237402 (2013).
[Crossref]

Fortier, T. M.

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, “Frequency stabilization to 6× 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

Giunta, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Goldner, P.

A. Ferrier, B. Tumino, and P. Goldner, “Variations in the oscillator strength of the 7F0 −5 D0 transition in single crystals,” J. Lumin. 170, 406–410 (2016).
[Crossref]

Grebing, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8× 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “A second generation of low thermal noise cryogenic silicon resonators,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

Grosche, G.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Guéna, J.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Häfner, S.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “A second generation of low thermal noise cryogenic silicon resonators,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8× 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

Hall, J. L.

Hänsel, W.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Hinkley, N.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Holzwarth, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Hutcheson, R. L.

F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Hutson, R. B.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Joshi, A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Julsgaard, B.

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11445–11465 (2007).
[Crossref]

Junger, P.

Katori, H.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

Kayser, S.

Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
[Crossref]

Kemery, A.

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Kirchner, M. S.

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, “Frequency stabilization to 6× 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

Koczwara, A.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Koke, S.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Könz, F.

F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Kröll, S.

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11445–11465 (2007).
[Crossref]

Kuhl, A.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Le Coq, Y.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

K. Mølmer, Y. Le Coq, and S. Seidelin, “Dispersive coupling between light and a rare-earth-ion-doped mechanical resonator,” Phys. Rev. A 94, 053804 (2016).
[Crossref]

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

Le Goff, R.

Le Targat, R.

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

Legero, T.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “A second generation of low thermal noise cryogenic silicon resonators,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8× 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

Leibrandt, D.

D. Leibrandt, M. Thorpe, C.-W. Chou, T. Fortier, S. Diddams, and T. Rosenband, “Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 111, 237402 (2013).
[Crossref]

Leibrandt, D. R.

S. Cook, T. Rosenband, and D. R. Leibrandt, “Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 114, 253902 (2015).
[Crossref]

M. J. Thorpe, D. R. Leibrandt, and T. Rosenband, “Shifts of optical frequency references based on spectral-hole burning in Eu3+:Y2SiO5,” New J. Phys.  15, 033006 (2013).
[Crossref]

Lemonde, P.

Lévèque, T.

Lezius, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Lisdat, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8× 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “A second generation of low thermal noise cryogenic silicon resonators,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

Lodewyck, J.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Lopez, O.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Lours, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Luckmann, H.

Ludlow, A. D.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Ma, L. S.

Macfarlane, R. M.

F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow Optical Dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

Marti, G. E.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Martin, M.

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

McGrew, W. F.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

McNally, R. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Merimaa, M.

Meynadier, F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Milani, G.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Mitsunaga, M.

Mølmer, K.

K. Mølmer, Y. Le Coq, and S. Seidelin, “Dispersive coupling between light and a rare-earth-ion-doped mechanical resonator,” Phys. Rev. A 94, 053804 (2016).
[Crossref]

Nevsky, A.

E. Wiens, Q.-F. Chen, I. Ernsting, H. Luckmann, U. Rosowski, A. Nevsky, and S. Schiller, “Silicon single-crystal cryogenic optical resonator,” Opt. Lett. 39, 3242–3245 (2014).
[Crossref] [PubMed]

Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
[Crossref]

Nicholson, T. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Nicolodi, D.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

Numata, K.

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Oates, C. W.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Ohkubo, T.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

Phillips, N. B.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Pottie, P.-E.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Prevost, E.

Quintin, N.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Raupach, S.M.F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Rippe, L.

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, “Frequency stabilization to 6× 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11445–11465 (2007).
[Crossref]

Robyr, J.-L.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Rosenband, T.

S. Cook, T. Rosenband, and D. R. Leibrandt, “Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 114, 253902 (2015).
[Crossref]

M. J. Thorpe, D. R. Leibrandt, and T. Rosenband, “Shifts of optical frequency references based on spectral-hole burning in Eu3+:Y2SiO5,” New J. Phys.  15, 033006 (2013).
[Crossref]

D. Leibrandt, M. Thorpe, C.-W. Chou, T. Fortier, S. Diddams, and T. Rosenband, “Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 111, 237402 (2013).
[Crossref]

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, “Frequency stabilization to 6× 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

Rosenbusch, P.

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Rosowski, U.

Safronova, M. S.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Santarelli, G.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, P. Lemonde, S. Bize, and G. Santarelli, “Prototype of an ultra-stable optic cavity for space applications,” Opt. Express,  20, 25409–25420 (2012).
[Crossref] [PubMed]

Schiller, S.

E. Wiens, Q.-F. Chen, I. Ernsting, H. Luckmann, U. Rosowski, A. Nevsky, and S. Schiller, “Silicon single-crystal cryogenic optical resonator,” Opt. Lett. 39, 3242–3245 (2014).
[Crossref] [PubMed]

Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
[Crossref]

Schioppo, M.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Schnatz, H.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Seidelin, S.

K. Mølmer, Y. Le Coq, and S. Seidelin, “Dispersive coupling between light and a rare-earth-ion-doped mechanical resonator,” Phys. Rev. A 94, 053804 (2016).
[Crossref]

Sherman, J. A.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Shi, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Stefani, F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Sterr, U.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “A second generation of low thermal noise cryogenic silicon resonators,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8× 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40, 2112–2115 (2015).
[Crossref]

Strouse, G. F.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Sun, Y.

F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow Optical Dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

Takamoto, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

Tew, W. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

Thiel, C. W.

F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Thorpe, M.

D. Leibrandt, M. Thorpe, C.-W. Chou, T. Fortier, S. Diddams, and T. Rosenband, “Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 111, 237402 (2013).
[Crossref]

Thorpe, M. J.

M. J. Thorpe, D. R. Leibrandt, and T. Rosenband, “Shifts of optical frequency references based on spectral-hole burning in Eu3+:Y2SiO5,” New J. Phys.  15, 033006 (2013).
[Crossref]

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, “Frequency stabilization to 6× 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

Tremblin, P.-A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Troshyn, A.

Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
[Crossref]

Tumino, B.

A. Ferrier, B. Tumino, and P. Goldner, “Variations in the oscillator strength of the 7F0 −5 D0 transition in single crystals,” J. Lumin. 170, 406–410 (2016).
[Crossref]

Tyumenev, R.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

Uesugi, N.

Ushijima, I.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

Vallet, G.

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Vasilyev, S.

Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
[Crossref]

Vogt, S.

Walther, A.

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11445–11465 (2007).
[Crossref]

Wiens, E.

Wiotte, F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Xie, X.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

Yano, R.

Ye, J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

L. S. Ma, P. Junger, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref] [PubMed]

Yoon, T. H.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

Zhang, W.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

J. Lumin. (1)

A. Ferrier, B. Tumino, and P. Goldner, “Variations in the oscillator strength of the 7F0 −5 D0 transition in single crystals,” J. Lumin. 170, 406–410 (2016).
[Crossref]

Metrologia (1)

J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123–1130 (2016).
[Crossref]

Nat. Commun (1)

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun.  7, 12443 (2016).
[Crossref] [PubMed]

Nat. Photonics (6)

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11, 48–52 (2017).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2017).
[Crossref]

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, “Frequency stabilization to 6× 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

Nature Commun (1)

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2× 10−18 total uncertainty,” Nature Commun.  6, 6896 (2015).
[Crossref]

New J. Phys (1)

M. J. Thorpe, D. R. Leibrandt, and T. Rosenband, “Shifts of optical frequency references based on spectral-hole burning in Eu3+:Y2SiO5,” New J. Phys.  15, 033006 (2013).
[Crossref]

New. J. Phys. (1)

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New. J. Phys. 18, 113002 (2016).
[Crossref]

Opt. Express (2)

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11445–11465 (2007).
[Crossref]

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, P. Lemonde, S. Bize, and G. Santarelli, “Prototype of an ultra-stable optic cavity for space applications,” Opt. Express,  20, 25409–25420 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (1)

K. Mølmer, Y. Le Coq, and S. Seidelin, “Dispersive coupling between light and a rare-earth-ion-doped mechanical resonator,” Phys. Rev. A 94, 053804 (2016).
[Crossref]

Phys. Rev. B (1)

F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Phys. Rev. Lett. (6)

Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, and S. Schiller, “Spectrally Narrow, Long-Term Stable Optical Frequency Reference Based on a Eu3+:Y2SiO5 Crystal at Cryogenic Temperature,” Phys. Rev. Lett. 107, 223202 (2011).
[Crossref]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow Optical Dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

S. Cook, T. Rosenband, and D. R. Leibrandt, “Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 114, 253902 (2015).
[Crossref]

D. Leibrandt, M. Thorpe, C.-W. Chou, T. Fortier, S. Diddams, and T. Rosenband, “Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning in Eu3+:Y2SiO5,” Phys. Rev. Lett. 111, 237402 (2013).
[Crossref]

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

B. P. Abbott and LIGO Scientific Collaboration and Virgo Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref] [PubMed]

Other (5)

For gravitational wave detectors in space, see https://www.elisascience.org/

Note that the linewidth of the transmission peak does not impact the limitation due to thermal agitation, but a narrow peak reduces strongly the impact of a wide group of technical noise (detection noise, effect of parasitic reflexions, residual amplitude modulation in a Pound-Drever-Hall (PDH) servo loop, etc.

The difference in powers mostly arises from the different efficiencies of the fiber coupling at 1160 nm.

D. Leibrandt (National Institute of Standards and Technology) and W. Zhang (JILA), Boulder, Colorado (personal communication, 2016).

http://gnuradio.org/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematics of the optical part of the experimental setup (LP: Low-pass filter, BP: Band-pass filter, PI: Proportional-Integral corrector, FPGA: Field Programmable Gate Arrays, AOM: Acousto-optic modulator). The graph in the insert displays the transmission of the inhomogeneously broadened profile of the dopants in the crystal.
Fig. 2
Fig. 2 a) Schematics of the cryostat mount of the Eu3+:Y2SiO5 crystal that prevents residual vibrations during the cooling cycle to strongly disturb atomic transition frequencies. The crystal mount itself is standing on three beryllium-copper springs that provide an extra vibration isolation stage. Thermal contact is realized by three groups of five annealed copper stripes. b) Transmission spectrum of a spectral hole corresponding to different temperatures of the crystal, using the cryostat mount depicted in a). The transmission percentage indicated takes into account the losses which are independent of the atomic absorption, caused by interfaces devoid of anti-reflection coating (the faces of the crystal in particular).
Fig. 3
Fig. 3 Digitalization and data processing chart. The input data channels are streamed at a rate of 2 × 106 samples per seconds (2 MSPS). The data channels are processed by vectors of 2 N samples each (here, typically N ≥ 7). The vectors are processed by Fast Fourier Transform algorithm before the two channels are divided in the Fourier domain. The resulting vector is separated in amplitude and phase components before being processed by a programmable frequency filter (which amounts to a multiplication by a filtering vector in the Fourier domain), which extracts data only at frequency modes in which signal is expected. The phase vector data is then summed, in order to combine the information from all the frequency channels in which signal is expected, and the resulting signal is used as an error signal for the servo loop maintaining the slave laser at resonance with the spectral hole(s).
Fig. 4
Fig. 4 a) Comparison between the frequency offset as a function of time of the laser being exclusively pre-stabilized (left side of the red dashed line) and being locked to a spectral hole (right side of the red dashed line). b) Allan variance of the exclusively pre-stabilized laser (red curve), and locked to a spectral hole obtained after a time delay of 0, 7 and 12 hours (purple, turquoise and green curve) respectively.

Metrics