The LIGO Scientific Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]
[PubMed]
R. C. Pooser and B. J. Lawrie, “Plasmonic Trace Sensing below the Photon Shot Noise Limit,” ACS Photon. 3, 8–13 (2016).
[Crossref]
M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016)
[Crossref]
Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]
T. Li, B. E. Anderson, T. Horrom, K. M. Jones, and P. D. Lett, “Effect of input phase modulation to a phase-sensitive optical amplifier,” Opt. Express 24, 19871–19880 (2016)
[Crossref]
[PubMed]
M. W. Holtfrerich, M. Dowran, R. Davidson, B.J. Lawrie, R.C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985–988, (2016)
[Crossref]
Joseph M. Lukens, Nicholas A. Peters, and Raphael C. Pooser, “Naturally stable SagnaćlCMichelson nonlinear interferometer,” Opt. Lett. 41, 5438–5441 (2016).
[Crossref]
[PubMed]
R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
[Crossref]
C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).
Hailong Wang and A. M. Marino, and Jietai Jing, “Experimental implementation of phase locking in a nonlinear interferometer,” Appl. Phys. Lett. 107, 121106 (2015).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref]
[PubMed]
B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
[Crossref]
[PubMed]
J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]
B. J. Lawrie and R. C. Pooser, “Toward real-time quantum imaging with a single pixel camera,” Opt. Express 21, 7549–7559 (2013).
[Crossref]
[PubMed]
Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref]
[PubMed]
A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref]
[PubMed]
The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011)
[Crossref]
J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]
M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Opt. Express 19, 3765–3774 (2011).
[Crossref]
[PubMed]
C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref]
[PubMed]
R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref]
[PubMed]
C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]
K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref]
[PubMed]
L. Mach, “Ueber einen Interferenzrefraktor,” Z. Instrumentenkd. 12, 89–93 (1892).
L. Zehnder, “Ein neuer Interferenzrefraktor,” Z. Instrumentenkd. 11, 275–285 (1891).
A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
[Crossref]
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref]
[PubMed]
M. Born and E. Wolf, Principle of Optics, 1st ed (Pergamon, 1959).
C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).
C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]
C. F. McCormick, V. Boyer, E. Arimonda, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref]
[PubMed]
K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref]
[PubMed]
A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]
C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).
B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
[Crossref]
[PubMed]
M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016)
[Crossref]
M. W. Holtfrerich, M. Dowran, R. Davidson, B.J. Lawrie, R.C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985–988, (2016)
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref]
[PubMed]
J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]
C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref]
[PubMed]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref]
[PubMed]
J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]
Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref]
[PubMed]
C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref]
[PubMed]
J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]
Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref]
[PubMed]
J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]
R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref]
[PubMed]
K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref]
[PubMed]
P. K. Lam, Ph. D. thesis, the Australian National University (1998).
R. C. Pooser and B. J. Lawrie, “Plasmonic Trace Sensing below the Photon Shot Noise Limit,” ACS Photon. 3, 8–13 (2016).
[Crossref]
B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
[Crossref]
[PubMed]
B. J. Lawrie and R. C. Pooser, “Toward real-time quantum imaging with a single pixel camera,” Opt. Express 21, 7549–7559 (2013).
[Crossref]
[PubMed]
T. Li, B. E. Anderson, T. Horrom, K. M. Jones, and P. D. Lett, “Effect of input phase modulation to a phase-sensitive optical amplifier,” Opt. Express 24, 19871–19880 (2016)
[Crossref]
[PubMed]
A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]
C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]
C. F. McCormick, V. Boyer, E. Arimonda, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref]
[PubMed]
J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]
Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref]
[PubMed]
C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref]
[PubMed]
J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref]
[PubMed]
L. Mach, “Ueber einen Interferenzrefraktor,” Z. Instrumentenkd. 12, 89–93 (1892).
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref]
[PubMed]
M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016)
[Crossref]
M. W. Holtfrerich, M. Dowran, R. Davidson, B.J. Lawrie, R.C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985–988, (2016)
[Crossref]
Hailong Wang and A. M. Marino, and Jietai Jing, “Experimental implementation of phase locking in a nonlinear interferometer,” Appl. Phys. Lett. 107, 121106 (2015).
[Crossref]
A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]
C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]
R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref]
[PubMed]
R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref]
[PubMed]
K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref]
[PubMed]
C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]
C. F. McCormick, V. Boyer, E. Arimonda, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]
K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref]
[PubMed]
A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
[Crossref]
A. R. Thompson, J. M. Morgan, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).
A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref]
[PubMed]
J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]
C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).
R. C. Pooser and B. J. Lawrie, “Plasmonic Trace Sensing below the Photon Shot Noise Limit,” ACS Photon. 3, 8–13 (2016).
[Crossref]
R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
[Crossref]
B. J. Lawrie and R. C. Pooser, “Toward real-time quantum imaging with a single pixel camera,” Opt. Express 21, 7549–7559 (2013).
[Crossref]
[PubMed]
B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
[Crossref]
[PubMed]
Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref]
[PubMed]
C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref]
[PubMed]
R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref]
[PubMed]
K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref]
[PubMed]
A. R. Thompson, J. M. Morgan, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).
A. R. Thompson, J. M. Morgan, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).
C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).
J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]
Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]
Hailong Wang and A. M. Marino, and Jietai Jing, “Experimental implementation of phase locking in a nonlinear interferometer,” Appl. Phys. Lett. 107, 121106 (2015).
[Crossref]
M. Born and E. Wolf, Principle of Optics, 1st ed (Pergamon, 1959).
Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]
L. Zehnder, “Ein neuer Interferenzrefraktor,” Z. Instrumentenkd. 11, 275–285 (1891).
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref]
[PubMed]
J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]
Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref]
[PubMed]
C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref]
[PubMed]
J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]
Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref]
[PubMed]
C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref]
[PubMed]
J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]
R. C. Pooser and B. J. Lawrie, “Plasmonic Trace Sensing below the Photon Shot Noise Limit,” ACS Photon. 3, 8–13 (2016).
[Crossref]
A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
[Crossref]
J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]
J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]
Hailong Wang and A. M. Marino, and Jietai Jing, “Experimental implementation of phase locking in a nonlinear interferometer,” Appl. Phys. Lett. 107, 121106 (2015).
[Crossref]
Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref]
[PubMed]
R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref]
[PubMed]
The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011)
[Crossref]
B. J. Lawrie and R. C. Pooser, “Toward real-time quantum imaging with a single pixel camera,” Opt. Express 21, 7549–7559 (2013).
[Crossref]
[PubMed]
T. Li, B. E. Anderson, T. Horrom, K. M. Jones, and P. D. Lett, “Effect of input phase modulation to a phase-sensitive optical amplifier,” Opt. Express 24, 19871–19880 (2016)
[Crossref]
[PubMed]
M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Opt. Express 19, 3765–3774 (2011).
[Crossref]
[PubMed]
C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref]
[PubMed]
Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref]
[PubMed]
C. F. McCormick, V. Boyer, E. Arimonda, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]
Joseph M. Lukens, Nicholas A. Peters, and Raphael C. Pooser, “Naturally stable SagnaćlCMichelson nonlinear interferometer,” Opt. Lett. 41, 5438–5441 (2016).
[Crossref]
[PubMed]
M. W. Holtfrerich, M. Dowran, R. Davidson, B.J. Lawrie, R.C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985–988, (2016)
[Crossref]
R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
[Crossref]
M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016)
[Crossref]
C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]
A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]
K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref]
[PubMed]
The LIGO Scientific Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]
[PubMed]
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref]
[PubMed]
B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
[Crossref]
[PubMed]
C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).
L. Zehnder, “Ein neuer Interferenzrefraktor,” Z. Instrumentenkd. 11, 275–285 (1891).
L. Mach, “Ueber einen Interferenzrefraktor,” Z. Instrumentenkd. 12, 89–93 (1892).
M. Born and E. Wolf, Principle of Optics, 1st ed (Pergamon, 1959).
P. K. Lam, Ph. D. thesis, the Australian National University (1998).
A. R. Thompson, J. M. Morgan, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).