Abstract

Optical interferometer has played an important role in optics. Up to now, many kinds of interferometers have been realized and found their applications. In this letter, we experimentally construct an interferometer by using parametric amplifier as a wave splitter and beam splitter as a wave combiner. We make measurements of interference fringes and explore the relationships between the interference visibility of the interferometer and various system parameters, such as the gain of the parametric amplifier, the one-photon detuning and the temperature of the Rb-85 vapor cell.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear Sagnac interferometer based on the four-wave mixing process

Jun Xin, Jinming Liu, and Jietai Jing
Opt. Express 25(2) 1350-1359 (2017)

Quantum beam splitter for orbital angular momentum of light: quantum correlation by four-wave mixing operated in a nonamplifying regime

Wei Liu, Rong Ma, Li Zeng, Zhongzhong Qin, and Xiaolong Su
Opt. Lett. 44(8) 2053-2056 (2019)

Tripartite Einstein-Podolsky-Rosen steering with linear and nonlinear beamsplitters in four-wave mixing of Rubidium atoms

Yang Liu, Yin Cai, Yu Xiang, Feng Li, Yanpeng Zhang, and Qiongyi He
Opt. Express 27(23) 33070-33079 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. R. Thompson, J. M. Morgan, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).
  2. A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
    [Crossref]
  3. K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
    [Crossref] [PubMed]
  4. R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
    [Crossref] [PubMed]
  5. The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011)
    [Crossref]
  6. The LIGO Scientific Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref] [PubMed]
  7. L. Zehnder, “Ein neuer Interferenzrefraktor,” Z. Instrumentenkd. 11, 275–285 (1891).
  8. L. Mach, “Ueber einen Interferenzrefraktor,” Z. Instrumentenkd. 12, 89–93 (1892).
  9. C. F. McCormick, V. Boyer, E. Arimonda, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
    [Crossref]
  10. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
    [Crossref]
  11. C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
    [Crossref] [PubMed]
  12. Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
    [Crossref] [PubMed]
  13. M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Opt. Express 19, 3765–3774 (2011).
    [Crossref] [PubMed]
  14. A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
    [Crossref] [PubMed]
  15. B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
    [Crossref] [PubMed]
  16. R. C. Pooser and B. J. Lawrie, “Plasmonic Trace Sensing below the Photon Shot Noise Limit,” ACS Photon. 3, 8–13 (2016).
    [Crossref]
  17. B. J. Lawrie and R. C. Pooser, “Toward real-time quantum imaging with a single pixel camera,” Opt. Express 21, 7549–7559 (2013).
    [Crossref] [PubMed]
  18. R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
    [Crossref]
  19. T. Li, B. E. Anderson, T. Horrom, K. M. Jones, and P. D. Lett, “Effect of input phase modulation to a phase-sensitive optical amplifier,” Opt. Express 24, 19871–19880 (2016)
    [Crossref] [PubMed]
  20. M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016)
    [Crossref]
  21. M. W. Holtfrerich, M. Dowran, R. Davidson, B.J. Lawrie, R.C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985–988, (2016)
    [Crossref]
  22. C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).
  23. J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
    [Crossref]
  24. J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
    [Crossref]
  25. F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
    [Crossref] [PubMed]
  26. Hailong Wang and A. M. Marino, and Jietai Jing, “Experimental implementation of phase locking in a nonlinear interferometer,” Appl. Phys. Lett. 107, 121106 (2015).
    [Crossref]
  27. Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
    [Crossref]
  28. A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
    [Crossref]
  29. Joseph M. Lukens, Nicholas A. Peters, and Raphael C. Pooser, “Naturally stable SagnaćlCMichelson nonlinear interferometer,” Opt. Lett. 41, 5438–5441 (2016).
    [Crossref] [PubMed]
  30. M. Born and E. Wolf, Principle of Optics, 1st ed (Pergamon, 1959).
  31. P. K. Lam, Ph. D. thesis, the Australian National University (1998).

2016 (7)

The LIGO Scientific Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref] [PubMed]

R. C. Pooser and B. J. Lawrie, “Plasmonic Trace Sensing below the Photon Shot Noise Limit,” ACS Photon. 3, 8–13 (2016).
[Crossref]

M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016)
[Crossref]

Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

T. Li, B. E. Anderson, T. Horrom, K. M. Jones, and P. D. Lett, “Effect of input phase modulation to a phase-sensitive optical amplifier,” Opt. Express 24, 19871–19880 (2016)
[Crossref] [PubMed]

M. W. Holtfrerich, M. Dowran, R. Davidson, B.J. Lawrie, R.C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985–988, (2016)
[Crossref]

Joseph M. Lukens, Nicholas A. Peters, and Raphael C. Pooser, “Naturally stable SagnaćlCMichelson nonlinear interferometer,” Opt. Lett. 41, 5438–5441 (2016).
[Crossref] [PubMed]

2015 (3)

R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
[Crossref]

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).

Hailong Wang and A. M. Marino, and Jietai Jing, “Experimental implementation of phase locking in a nonlinear interferometer,” Appl. Phys. Lett. 107, 121106 (2015).
[Crossref]

2014 (1)

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

2013 (3)

B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

B. J. Lawrie and R. C. Pooser, “Toward real-time quantum imaging with a single pixel camera,” Opt. Express 21, 7549–7559 (2013).
[Crossref] [PubMed]

2012 (3)

Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref] [PubMed]

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref] [PubMed]

2008 (1)

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

2007 (1)

2002 (1)

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref] [PubMed]

1892 (1)

L. Mach, “Ueber einen Interferenzrefraktor,” Z. Instrumentenkd. 12, 89–93 (1892).

1891 (1)

L. Zehnder, “Ein neuer Interferenzrefraktor,” Z. Instrumentenkd. 11, 275–285 (1891).

1887 (1)

A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
[Crossref]

Achal, R.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Anderson, B. E.

Arimonda, E.

Born, M.

M. Born and E. Wolf, Principle of Optics, 1st ed (Pergamon, 1959).

Boyer, V.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

C. F. McCormick, V. Boyer, E. Arimonda, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

Brannan, T.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Buchler, B. C.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref] [PubMed]

Corzo Trejo, N. V.

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

Davidson, R.

Dowran, M.

Embrey, C. S.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).

Evans, P. G.

B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
[Crossref] [PubMed]

Holtfrerich, M. W.

M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016)
[Crossref]

M. W. Holtfrerich, M. Dowran, R. Davidson, B.J. Lawrie, R.C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985–988, (2016)
[Crossref]

Horrom, T.

Hudelist, F.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref] [PubMed]

Jasperse, M.

Jing, J.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref] [PubMed]

C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref] [PubMed]

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Jing, Jietai

Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Jones, K. M.

Kong, J.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

Lam, P. K.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref] [PubMed]

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref] [PubMed]

P. K. Lam, Ph. D. thesis, the Australian National University (1998).

Lawrie, B.

Lawrie, B. J.

R. C. Pooser and B. J. Lawrie, “Plasmonic Trace Sensing below the Photon Shot Noise Limit,” ACS Photon. 3, 8–13 (2016).
[Crossref]

B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
[Crossref] [PubMed]

B. J. Lawrie and R. C. Pooser, “Toward real-time quantum imaging with a single pixel camera,” Opt. Express 21, 7549–7559 (2013).
[Crossref] [PubMed]

Lawrie, B.J.

Lett, P. D.

T. Li, B. E. Anderson, T. Horrom, K. M. Jones, and P. D. Lett, “Effect of input phase modulation to a phase-sensitive optical amplifier,” Opt. Express 24, 19871–19880 (2016)
[Crossref] [PubMed]

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

C. F. McCormick, V. Boyer, E. Arimonda, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

Li, T.

Liu, C.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref] [PubMed]

C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref] [PubMed]

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Lukens, Joseph M.

Lvovsky, A. I.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Mach, L.

L. Mach, “Ueber einen Interferenzrefraktor,” Z. Instrumentenkd. 12, 89–93 (1892).

MacRae, A.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Marino, A. M.

M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016)
[Crossref]

M. W. Holtfrerich, M. Dowran, R. Davidson, B.J. Lawrie, R.C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985–988, (2016)
[Crossref]

Hailong Wang and A. M. Marino, and Jietai Jing, “Experimental implementation of phase locking in a nonlinear interferometer,” Appl. Phys. Lett. 107, 121106 (2015).
[Crossref]

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

Mavalvala, N.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref] [PubMed]

McClelland, D. E.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref] [PubMed]

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref] [PubMed]

McCormick, C. F.

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

C. F. McCormick, V. Boyer, E. Arimonda, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

McKenzie, K.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref] [PubMed]

Michelson, A. A.

A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
[Crossref]

Morgan, J. M.

A. R. Thompson, J. M. Morgan, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).

Morley, E. W.

A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
[Crossref]

Ou, Z. Y.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Peters, Nicholas A.

Petrov, P. G.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).

Pooser, R. C.

Pooser, R.C.

Pooser, Raphael C.

Qin, Z.

Schnabel, R.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref] [PubMed]

Scholten, R. E.

Shaddock, D. A.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref] [PubMed]

Swenson, G. W.

A. R. Thompson, J. M. Morgan, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).

Thompson, A. R.

A. R. Thompson, J. M. Morgan, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).

Turnbull, M. T.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).

Turner, L. D.

Wang, H.

J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

Wang, Hailong

Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Hailong Wang and A. M. Marino, and Jietai Jing, “Experimental implementation of phase locking in a nonlinear interferometer,” Appl. Phys. Lett. 107, 121106 (2015).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principle of Optics, 1st ed (Pergamon, 1959).

Xin, Jun

Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Zehnder, L.

L. Zehnder, “Ein neuer Interferenzrefraktor,” Z. Instrumentenkd. 11, 275–285 (1891).

Zhang, W.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref] [PubMed]

C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref] [PubMed]

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Zhou, J.

Zhou, L.

Zhou, Z.

ACS Photon. (1)

R. C. Pooser and B. J. Lawrie, “Plasmonic Trace Sensing below the Photon Shot Noise Limit,” ACS Photon. 3, 8–13 (2016).
[Crossref]

Am. J. Sci. (1)

A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
[Crossref]

Appl. Phys. Lett. (4)

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

J. Kong, J. Jing, H. Wang, F. Hudelist, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

Hailong Wang and A. M. Marino, and Jietai Jing, “Experimental implementation of phase locking in a nonlinear interferometer,” Appl. Phys. Lett. 107, 121106 (2015).
[Crossref]

Jun Xin, Hailong Wang, and Jietai Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Nat. Commun. (2)

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011)
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (2)

Phys. Rev. A (3)

M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016)
[Crossref]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wavemixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

Phys. Rev. Lett. (4)

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection,” Phys. Rev. Lett. 88, 231102 (2002).
[Crossref] [PubMed]

The LIGO Scientific Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref] [PubMed]

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons,” Phys. Rev. Lett. 110, 156802 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of Localized Multi-Spatial-Mode Quadrature Squeezing,” Phys. Rev. X 5, 031004 (2015).

Z. Instrumentenkd. (2)

L. Zehnder, “Ein neuer Interferenzrefraktor,” Z. Instrumentenkd. 11, 275–285 (1891).

L. Mach, “Ueber einen Interferenzrefraktor,” Z. Instrumentenkd. 12, 89–93 (1892).

Other (3)

M. Born and E. Wolf, Principle of Optics, 1st ed (Pergamon, 1959).

P. K. Lam, Ph. D. thesis, the Australian National University (1998).

A. R. Thompson, J. M. Morgan, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Comparison between the scheme of DFWM and the scheme of NDFWM. (a) The scheme of DFWM where all the three output beams have the same frequency. (b) The scheme of NDFWM where all the three output beams have different frequencies. Is,out, Ii,out, Ip,out, the intensities of the output beams; ωs, ωi, ωp, the frequency of the output beams.
Fig. 2
Fig. 2 The relationships between the power of two output ports of DFWM and various system parameters. (a) The relationship between the power of two output ports (signal beam, blue dot and idler beam, green diamond) and the seed power. (b) The relationship between the power of two output ports (signal beam, blue dot and idler beam, green diamond) and the pump power. (c) The power of two output ports (signal beam, blue dot and idler beam, green diamond) as a function of the one-photon detuning. (d) The power of two output ports (signal beam, blue dot and idler beam, green diamond) as a function of the temperature of the Rb-85 vapor cell. Both (c) and (d) figures include the traces for the gain of the system (red square).
Fig. 3
Fig. 3 Experimental setup. (a) HWP, half wave plate; PBS, polarization beam splitter; GL, Glan-Laser polarizer; GT, Glan-Thompson polarizer; PZT, piezo-electric transducer; BS, beam splitter; D1, D2, photodetectors; OS, oscilloscope. (b) Energy level diagram of Rb-85 D1 line for DFWM. Δ, one-photon detuning.
Fig. 4
Fig. 4 Typical interference fringes detected by D1, D2 photodetectors respectively. (a) D1 output. (b) D2 output.
Fig. 5
Fig. 5 The dependence of the interference visibilities on various system parameters. (a) The interference visibilities of the two output ports as a function of the gain of the PA. (b) The relationship between the interference visibilities of the two output ports and the one-photon detuning. (c) The relationship between the interference visibilities of the two output ports and the temperature of the Rb-85 vapor cell. Both (b) and (c) figures include the traces for the gain of the PA.

Metrics