Abstract

We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser

Atsushi Ishizawa, Tadashi Nishikawa, Akira Mizutori, Hidehiko Takara, Atsushi Takada, Tetsuomi Sogawa, and Masafumi Koga
Opt. Express 21(24) 29186-29194 (2013)

Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate

Sargis Hakobyan, Valentin J. Wittwer, Pierre Brochard, Kutan Gürel, Stéphane Schilt, Aline S. Mayer, Ursula Keller, and Thomas Südmeyer
Opt. Express 25(17) 20437-20453 (2017)

Low-noise fiber-laser frequency combs (Invited)

Nathan R. Newbury and William C. Swann
J. Opt. Soc. Am. B 24(8) 1756-1770 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
    [Crossref] [PubMed]
  2. T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
    [Crossref]
  3. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [Crossref] [PubMed]
  4. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
    [Crossref]
  5. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [Crossref]
  6. V. Ataie, E. Temprana, L. Liu, E. Myslivets, P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
    [Crossref]
  7. J. Li, X. Zhang, F. Tian, and L. Xi, “Theoretical and experimental study on generation of stable and high-quality multi-carrier source based on re-circulating frequency shifter used for Tb/s optical transmission,” Opt. Express 19(2), 848–860 (2011).
    [Crossref] [PubMed]
  8. K. Sato, “Optical pulse generation using Fabry-Perot lasers under continuous wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1293–1296 (2003).
    [Crossref]
  9. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [Crossref]
  10. Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
    [Crossref] [PubMed]
  11. G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
    [Crossref]
  12. V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
    [Crossref]
  13. J. Pfeifle, I. Shkarban, and S. Wolf, “Coherent terabit communications using a quantum-dash mode-locked laser and self-homodyne detection,” in Optical Fiber Communications Conference (OFC, 2015), paper Tu3I.5.
    [Crossref]
  14. R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express 20(8), 9151–9160 (2012).
    [Crossref] [PubMed]
  15. H. Tsuchida, “Wideband phase-noise measurement of mode-locked laser pulses by a demodulation technique,” Opt. Lett. 23(4), 286–288 (1998).
    [Crossref] [PubMed]
  16. A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
    [Crossref]
  17. T. Habruseva, S. O’Donoghue, N. Rebrova, F. Kéfélian, S. P. Hegarty, and G. Huyet, “Optical linewidth of a passively mode-locked semiconductor laser,” Opt. Lett. 34(21), 3307–3309 (2009).
    [Crossref] [PubMed]
  18. R. Watts, R. Rosales, F. Lelarge, A. Ramdane, and L. Barry, “Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser,” Opt. Lett. 37(9), 1499–1501 (2012).
    [Crossref] [PubMed]
  19. K. Zanette, J. C. Cartledge, and M. O’Sullivan, “Correlation properties of the phase noise between pairs of lines in a quantum-dot optical frequency comb source,” in Optical Fiber Communications Conference (OFC, 2017), paper Th3I.6.
    [Crossref]
  20. A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
    [Crossref]
  21. A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Generalized spectral magnitude and phase retrieval algorithm for self-referenced multiheterodyne detection,” J. Lightwave Technol. 31(23), 3758–3764 (2013).
    [Crossref]
  22. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
    [Crossref]
  23. M. Gioannini, P. Bardella, and I. Montrosset, “Time-domain traveling-wave analysis of the multimode dynamics of quantum dot Fabry–Perot lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900811 (2015).
    [Crossref]
  24. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
    [Crossref]
  25. R. Paschotta, “Noise of mode-locked lasers (Part II): and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
    [Crossref]
  26. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  27. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  28. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [Crossref]

2016 (1)

2015 (3)

M. Gioannini, P. Bardella, and I. Montrosset, “Time-domain traveling-wave analysis of the multimode dynamics of quantum dot Fabry–Perot lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900811 (2015).
[Crossref]

V. Ataie, E. Temprana, L. Liu, E. Myslivets, P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
[Crossref]

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

2013 (2)

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Generalized spectral magnitude and phase retrieval algorithm for self-referenced multiheterodyne detection,” J. Lightwave Technol. 31(23), 3758–3764 (2013).
[Crossref]

2012 (3)

2011 (1)

2009 (3)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

T. Habruseva, S. O’Donoghue, N. Rebrova, F. Kéfélian, S. P. Hegarty, and G. Huyet, “Optical linewidth of a passively mode-locked semiconductor laser,” Opt. Lett. 34(21), 3307–3309 (2009).
[Crossref] [PubMed]

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

2008 (2)

2007 (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

2006 (3)

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

2005 (2)

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[Crossref] [PubMed]

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

2004 (1)

R. Paschotta, “Noise of mode-locked lasers (Part II): and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

2003 (1)

K. Sato, “Optical pulse generation using Fabry-Perot lasers under continuous wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1293–1296 (2003).
[Crossref]

1998 (1)

1990 (1)

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[Crossref]

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

Accard, A.

Akrout, A.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Alic, N.

Ataie, V.

Bardella, P.

M. Gioannini, P. Bardella, and I. Montrosset, “Time-domain traveling-wave analysis of the multimode dynamics of quantum dot Fabry–Perot lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900811 (2015).
[Crossref]

Barrios, P. J.

Barros, D. J. F.

Barry, L.

Barry, L. P.

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

Blache, F.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Brehm, M.

Browning, C.

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

Cal’o, C.

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Coddington, I.

Davila-Rodriguez, J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Generalized spectral magnitude and phase retrieval algorithm for self-referenced multiheterodyne detection,” J. Lightwave Technol. 31(23), 3758–3764 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

Delfyett, P. J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Generalized spectral magnitude and phase retrieval algorithm for self-referenced multiheterodyne detection,” J. Lightwave Technol. 31(23), 3758–3764 (2013).
[Crossref]

Duan, G.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Ellis, A. D.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Finch, A.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[Crossref]

Gariah, H.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Gioannini, M.

M. Gioannini, P. Bardella, and I. Montrosset, “Time-domain traveling-wave analysis of the multimode dynamics of quantum dot Fabry–Perot lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900811 (2015).
[Crossref]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Gunning, F. C. G.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Habruseva, T.

Hall, J. L.

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

Hänsch, T. W.

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Hegarty, S. P.

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Huyet, G.

Ip, E.

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Kahn, J. M.

Kean, P. N.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[Crossref]

Kéfélian, F.

Keilmann, F.

Keller, U.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Klee, A.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Generalized spectral magnitude and phase retrieval algorithm for self-referenced multiheterodyne detection,” J. Lightwave Technol. 31(23), 3758–3764 (2013).
[Crossref]

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Kuo, P.

Lau, A. P. T.

LeGouezigou, O.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Lelarge, F.

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

R. Watts, R. Rosales, F. Lelarge, A. Ramdane, and L. Barry, “Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser,” Opt. Lett. 37(9), 1499–1501 (2012).
[Crossref] [PubMed]

R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express 20(8), 9151–9160 (2012).
[Crossref] [PubMed]

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Li, J.

Liu, J. R.

Liu, L.

Lu, Z. G.

Mallecot, F.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Martinez, A.

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express 20(8), 9151–9160 (2012).
[Crossref] [PubMed]

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Merghem, K.

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express 20(8), 9151–9160 (2012).
[Crossref] [PubMed]

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Montrosset, I.

M. Gioannini, P. Bardella, and I. Montrosset, “Time-domain traveling-wave analysis of the multimode dynamics of quantum dot Fabry–Perot lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900811 (2015).
[Crossref]

Myslivets, E.

Newbury, N.

O’Donoghue, S.

Paschotta, R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

R. Paschotta, “Noise of mode-locked lasers (Part II): and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

Poitras, D.

Pommereau, F.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Poole, P. J.

Provost, J.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Radic, S.

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Ramdane, A.

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express 20(8), 9151–9160 (2012).
[Crossref] [PubMed]

R. Watts, R. Rosales, F. Lelarge, A. Ramdane, and L. Barry, “Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser,” Opt. Lett. 37(9), 1499–1501 (2012).
[Crossref] [PubMed]

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Raymond, S.

Rebrova, N.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Rosales, R.

Sato, K.

K. Sato, “Optical pulse generation using Fabry-Perot lasers under continuous wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1293–1296 (2003).
[Crossref]

Schlatter, A.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Schliesser, A.

Shen, A.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[Crossref]

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Swann, W.

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Telle, H. R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Temprana, E.

Tian, F.

Tsuchida, H.

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

van der Weide, D.

Van Dijk, F.

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

Vujicic, V.

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Watts, R.

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

R. Watts, R. Rosales, F. Lelarge, A. Ramdane, and L. Barry, “Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser,” Opt. Lett. 37(9), 1499–1501 (2012).
[Crossref] [PubMed]

Williams, C.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Generalized spectral magnitude and phase retrieval algorithm for self-referenced multiheterodyne detection,” J. Lightwave Technol. 31(23), 3758–3764 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

Xi, L.

Zeller, S. C.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Zhang, X.

Zhu, X.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[Crossref]

Appl. Phys. B (3)

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

R. Paschotta, “Noise of mode-locked lasers (Part II): and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

Bell Labs Tech. J. (1)

G. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

V. Vujicic, C. Cal’o, R. Watts, F. Lelarge, C. Browning, K. Merghem, A. Martinez, A. Ramdane, and L. P. Barry, “Quantum dash mode-locked lasers for data centre applications,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1101508 (2015).
[Crossref]

K. Sato, “Optical pulse generation using Fabry-Perot lasers under continuous wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1293–1296 (2003).
[Crossref]

M. Gioannini, P. Bardella, and I. Montrosset, “Time-domain traveling-wave analysis of the multimode dynamics of quantum dot Fabry–Perot lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900811 (2015).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (2)

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Optica (1)

Rev. Mod. Phys. (2)

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

Other (2)

K. Zanette, J. C. Cartledge, and M. O’Sullivan, “Correlation properties of the phase noise between pairs of lines in a quantum-dot optical frequency comb source,” in Optical Fiber Communications Conference (OFC, 2017), paper Th3I.6.
[Crossref]

J. Pfeifle, I. Shkarban, and S. Wolf, “Coherent terabit communications using a quantum-dash mode-locked laser and self-homodyne detection,” in Optical Fiber Communications Conference (OFC, 2015), paper Tu3I.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Illustration of coherent I/Q mixing between comb under-test (CUT) with a repetition frequency F and a local oscillator (LO) with a single spectral line. (b) Coherent I/Q mixing between CUT and a reference comb with a repetition frequency F + δf . Double-ended arrows indicate mixing between spectral lines and single-ended arrows indicate locations of resultant spectral lines in the RF domain.
Fig. 2
Fig. 2 (a) Optical spectral density of the diode laser frequency comb measured with 0.01nm resolution bandwidth, and (b) RF spectra of the 1st and the 2nd order beating notes and Lorentzian fitting, where the frequency has been shifted by the central frequency fn (n = 1, 2) of each peak .
Fig. 3
Fig. 3 (a) Example of measured spectrum of heterodyne detection using a tunable external-cavity laser as the local oscillator, (b) Measured spectral linewidths (solid squares) of spectral lines at different wavelengths by tuning the LO wavelength across the window, and parabolic fitting (solid line). Inset in (b) is an example of phase noise PSD and −20dB/decade fitting. (c) Spectral linewidth extracted from the phase of each spectral line in Fig. 7(a) below in multi-heterodyne measurement. Solid line is the same parabolic fit as that in (b). Inset in (c) shows wavelength of minimum linewidth predicted by minimum correlation between common-mode and IDMP noises.
Fig. 4
Fig. 4 Experimental setup for multi-heterodyne experiment, where a reference comb is generated by a re-circulating loop resonator.
Fig. 5
Fig. 5 Measured optical spectra of the comb laser source (blue) plotted together with the reference comb (red) in the 1542.3-1546.5nm wavelength window.
Fig. 6
Fig. 6 RF spectra obtained by Fourier transform of (a) iI(t) - jiQ(t) (a) and (b) iI(t) + jiQ(t).
Fig. 7
Fig. 7 (a) Positive-frequency side of the multi-heterodyne RF spectrum, (b) Spectrum obtained after removing the common-mode phase noise using the first spectral line (m = 1) as the reference, (c) same as (b) but use the 25th spectral line (m = 25) as the phase reference.
Fig. 8
Fig. 8 (a) Differential phase Δφmn(t) of lines 1, 10, 20, 30 and 40 as the function of time with m = 1 as the reference line, and (b) differential phase normalized by line separation with the reference line m.
Fig. 9
Fig. 9 Same as Fig. 8, except that m = 25 is chosen as the reference line.
Fig. 10
Fig. 10 FWHM spectral linewidth as the function of the spectral line index for reference line chosen as m = 1 (a) and m = 25 (b). Examples of spectral line shapes (inset in (a)), and phase noise power spectral densities (insets in (b)) of n = 2 (red), 25 (black), and 48 (blue). Both insets were obtained with m = 1 as the reference line.
Fig. 11
Fig. 11 Optical phase of spectral lines n = 5, 10, 20, 30 and 40 shown in the spectrum of Fig. 6(a) without common-mode phase noise cancelation
Fig. 12
Fig. 12 Comparison between common-mode phase noise (red) and IDMP noise (black) waveforms.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ϕ n (t)= ϕ r (t)+Δ ϕ r,n (t)= ϕ r (t)+( rn )δϕ(t)
Δv=2π f 2 S ϕ ( f )
Δ v n =Δ v r +Δ v diff ( λ λ r F λ r 2 /c ) 2
δ t j (t)= δϕ(t) 2πF
A(t)= n=1 N a n exp{ j[2π f A n t+ ϕ A n (t)] }
B(t)= n=1 N b n exp{ j[2π f B n t+ ϕ B (t)] }
i 1 (t)= i I (t)j i Q (t)=ξ A * B =ξ n=1 N k=1 N a n b k exp{ j[2π( kn )Ft+2πΔ+2π( k1 )δft ϕ A n (t)+ ϕ B (t)] }
i 2 (t)= i I (t)+j i Q (t)=ξA B * =ξ n=1 N k=1 N a n b k exp{ j[2π( nk )Ft2πΔ2π( k1 )δft+ ϕ A n (t) ϕ B (t)] }
i 1m (t)=ξ a m b m exp[2π( m1 )δft+2πΔ ϕ A m (t)+ ϕ B (t)]
i 1m (t)=ξ a m b m exp[2π( m1 )δft+2πΔ ϕ r (t)Δ ϕ r,m (t)+ ϕ B (t)]
i 2 (t)=ξ n=1 N a n b n exp[2π( n1 )δft2πΔ+ ϕ r ( t )+Δ ϕ r,n (t) ϕ B (t)]
{ i 1m ( t ) i 2 ( t ) } * = ξ 2 a m b m n=1 N a n b n exp{ j[2π( nm )δft+Δ ϕ mn (t)] }
Δ v n =Δ v am + ( nm ) 2 Δ v pm

Metrics