Abstract

We observe a narrow secondary dispersive feature nested within conventional nonlinear magneto-optical rotation (NMOR) signals obtained with a laser-cooled rubidium vapor. A similar feature has been previously named a “twist” by Budker et. al., in the context of warm vapor optical magnetometry [Phys. Rev. A. 81, 5788-5791 (1998)], and was ascribed to simultaneous optical pumping through multiple nearby hyperfine levels. In this work the twist is observed in a cold atom vapor, where the hyperfine levels are individually addressable, and thus is due to a different mechanism. We experimentally and numerically characterize this twist in terms of magnetic field strength, polarization, and optical intensity and find good agreement between our data and numerical models. We find that the twist width is proportional to the magnetic field in the transverse direction, and therefore two independent directions of the magnetic field can be measured simultaneously. This technique is useful as a simple and rapid in-situ method for nulling background magnetic fields.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atomic noise spectra in nonlinear magneto-optical rotation in a rubidium vapor

Hebin Li, Vladimir A. Sautenkov, Tigran S. Varzhapetyan, Yuri V. Rostovtsev, and Marlan O. Scully
J. Opt. Soc. Am. B 25(10) 1702-1707 (2008)

Influence of a buffer gas on nonlinear magneto-optical polarization rotation

Irina Novikova, Andrey B. Matsko, and George R. Welch
J. Opt. Soc. Am. B 22(1) 44-56 (2005)

Large polarization rotation via atomic coherence

I. Novikova, A. B. Matsko, and G. R. Welch
Opt. Lett. 26(13) 1016-1018 (2001)

References

  • View by:
  • |
  • |
  • |

  1. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
    [Crossref]
  2. D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University, 2013).
    [Crossref]
  3. D. Budker, V. Yashchuk, and M. Zolotorev, “Nonlinear magneto-optic effects with ultranarrow widths,” Phys. Rev. Lett. 81, 5788–5791 (1998).
    [Crossref]
  4. G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
    [Crossref]
  5. A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
    [Crossref]
  6. T. Zigdon, A. D. Wilson-Gordon, S. Guttikonda, E. J. Bahr, O. Neitzke, S. M. Rochester, and D. Budker, “Nonlinear magneto-optical rotation in the presence of a radio-frequency field,” Opt. Express 18, 25494–25508 (2010).
    [Crossref] [PubMed]
  7. M. Auzinsh, D. Budker, and S. Rochester, Optically polarized atoms: understanding light-atom interactions (Oxford University, 2010).
  8. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion,” Phys. Rev. Lett. 85, 2088–2091 (2000).
    [Crossref] [PubMed]
  9. F. Fang, R. Olf, S. Wu, H. Kadau, and D. M. Stamper-Kurn, “Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas,” Phys. Rev. Lett. 116, 095301 (2016).
    [Crossref] [PubMed]
  10. D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, “Magnetic phases of spin-1 spin-orbit-coupled Bose gases,” Nat. Commun. 7, 10897 (2016).
    [Crossref] [PubMed]
  11. A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Quantum Control in the Cs 6s1/2 Ground Manifold Using Radio-Frequency and Microwave Magnetic Fields,” Phys. Rev. Lett. 111, 170502 (2013).
    [Crossref]
  12. Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
    [Crossref]
  13. M. Ebert, M. Kwon, T. Walker, and M. Saffman, “Coherence and Rydberg Blockade of Atomic Ensemble Qubits,” Phys. Rev. Lett. 115, 093601 (2015).
    [Crossref] [PubMed]
  14. Y. Malakyan, S. Rochester, D. Budker, D. Kimball, and V. Yashchuk, “Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition,” Phys. Rev. A 69, 013817 (2004).
    [Crossref]
  15. D. Budker, D. F. Kimball, and D. P. DeMille, Atomic physics: an exploration through problems and solutions (Oxford University, 2008), 2nd ed.
  16. S. Rochester, “AtomicDensityMatrix Mathematica package,” http://rochesterscientific.com/ADM/ .
  17. M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77, 063417 (2008).
    [Crossref]
  18. B. S. Mathur, H. Tang, and W. Happer, “Light Shifts in the Alkali Atoms,” Phys. Rev. 171, 11–19 (1968).
    [Crossref]

2016 (2)

F. Fang, R. Olf, S. Wu, H. Kadau, and D. M. Stamper-Kurn, “Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas,” Phys. Rev. Lett. 116, 095301 (2016).
[Crossref] [PubMed]

D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, “Magnetic phases of spin-1 spin-orbit-coupled Bose gases,” Nat. Commun. 7, 10897 (2016).
[Crossref] [PubMed]

2015 (1)

M. Ebert, M. Kwon, T. Walker, and M. Saffman, “Coherence and Rydberg Blockade of Atomic Ensemble Qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

2013 (2)

A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Quantum Control in the Cs 6s1/2 Ground Manifold Using Radio-Frequency and Microwave Magnetic Fields,” Phys. Rev. Lett. 111, 170502 (2013).
[Crossref]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

2010 (1)

2008 (1)

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77, 063417 (2008).
[Crossref]

2006 (2)

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

2004 (1)

Y. Malakyan, S. Rochester, D. Budker, D. Kimball, and V. Yashchuk, “Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition,” Phys. Rev. A 69, 013817 (2004).
[Crossref]

2002 (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

2000 (1)

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion,” Phys. Rev. Lett. 85, 2088–2091 (2000).
[Crossref] [PubMed]

1998 (1)

D. Budker, V. Yashchuk, and M. Zolotorev, “Nonlinear magneto-optic effects with ultranarrow widths,” Phys. Rev. Lett. 81, 5788–5791 (1998).
[Crossref]

1968 (1)

B. S. Mathur, H. Tang, and W. Happer, “Light Shifts in the Alkali Atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

Anderson, B. E.

A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Quantum Control in the Cs 6s1/2 Ground Manifold Using Radio-Frequency and Microwave Magnetic Fields,” Phys. Rev. Lett. 111, 170502 (2013).
[Crossref]

Auzinsh, M.

M. Auzinsh, D. Budker, and S. Rochester, Optically polarized atoms: understanding light-atom interactions (Oxford University, 2010).

Bahr, E. J.

Bashkansky, M.

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77, 063417 (2008).
[Crossref]

Bison, G.

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

Budker, D.

T. Zigdon, A. D. Wilson-Gordon, S. Guttikonda, E. J. Bahr, O. Neitzke, S. M. Rochester, and D. Budker, “Nonlinear magneto-optical rotation in the presence of a radio-frequency field,” Opt. Express 18, 25494–25508 (2010).
[Crossref] [PubMed]

Y. Malakyan, S. Rochester, D. Budker, D. Kimball, and V. Yashchuk, “Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition,” Phys. Rev. A 69, 013817 (2004).
[Crossref]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion,” Phys. Rev. Lett. 85, 2088–2091 (2000).
[Crossref] [PubMed]

D. Budker, V. Yashchuk, and M. Zolotorev, “Nonlinear magneto-optic effects with ultranarrow widths,” Phys. Rev. Lett. 81, 5788–5791 (1998).
[Crossref]

D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University, 2013).
[Crossref]

D. Budker, D. F. Kimball, and D. P. DeMille, Atomic physics: an exploration through problems and solutions (Oxford University, 2008), 2nd ed.

M. Auzinsh, D. Budker, and S. Rochester, Optically polarized atoms: understanding light-atom interactions (Oxford University, 2010).

Campbell, D. L.

D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, “Magnetic phases of spin-1 spin-orbit-coupled Bose gases,” Nat. Commun. 7, 10897 (2016).
[Crossref] [PubMed]

DeMille, D. P.

D. Budker, D. F. Kimball, and D. P. DeMille, Atomic physics: an exploration through problems and solutions (Oxford University, 2008), 2nd ed.

Deutsch, I. H.

A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Quantum Control in the Cs 6s1/2 Ground Manifold Using Radio-Frequency and Microwave Magnetic Fields,” Phys. Rev. Lett. 111, 170502 (2013).
[Crossref]

Domenico, G. Di

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

Dudin, Y. O.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Ebert, M.

M. Ebert, M. Kwon, T. Walker, and M. Saffman, “Coherence and Rydberg Blockade of Atomic Ensemble Qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

Fang, F.

F. Fang, R. Olf, S. Wu, H. Kadau, and D. M. Stamper-Kurn, “Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas,” Phys. Rev. Lett. 116, 095301 (2016).
[Crossref] [PubMed]

Fatemi, F. K.

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77, 063417 (2008).
[Crossref]

Gawlik, W.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Groeger, S.

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

Guttikonda, S.

Happer, W.

B. S. Mathur, H. Tang, and W. Happer, “Light Shifts in the Alkali Atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

Jessen, P. S.

A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Quantum Control in the Cs 6s1/2 Ground Manifold Using Radio-Frequency and Microwave Magnetic Fields,” Phys. Rev. Lett. 111, 170502 (2013).
[Crossref]

Kadau, H.

F. Fang, R. Olf, S. Wu, H. Kadau, and D. M. Stamper-Kurn, “Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas,” Phys. Rev. Lett. 116, 095301 (2016).
[Crossref] [PubMed]

Kimball, D.

Y. Malakyan, S. Rochester, D. Budker, D. Kimball, and V. Yashchuk, “Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition,” Phys. Rev. A 69, 013817 (2004).
[Crossref]

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion,” Phys. Rev. Lett. 85, 2088–2091 (2000).
[Crossref] [PubMed]

D. Budker, D. F. Kimball, and D. P. DeMille, Atomic physics: an exploration through problems and solutions (Oxford University, 2008), 2nd ed.

Kimball, D. F. J.

D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University, 2013).
[Crossref]

Knowles, P.

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

Kuzmich, A.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Kwon, M.

M. Ebert, M. Kwon, T. Walker, and M. Saffman, “Coherence and Rydberg Blockade of Atomic Ensemble Qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

Li, L.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Malakyan, Y.

Y. Malakyan, S. Rochester, D. Budker, D. Kimball, and V. Yashchuk, “Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition,” Phys. Rev. A 69, 013817 (2004).
[Crossref]

Mathur, B. S.

B. S. Mathur, H. Tang, and W. Happer, “Light Shifts in the Alkali Atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

Neitzke, O.

Olf, R.

F. Fang, R. Olf, S. Wu, H. Kadau, and D. M. Stamper-Kurn, “Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas,” Phys. Rev. Lett. 116, 095301 (2016).
[Crossref] [PubMed]

Pazgalev, A. S.

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

Price, R. M.

D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, “Magnetic phases of spin-1 spin-orbit-coupled Bose gases,” Nat. Commun. 7, 10897 (2016).
[Crossref] [PubMed]

Putra, A.

D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, “Magnetic phases of spin-1 spin-orbit-coupled Bose gases,” Nat. Commun. 7, 10897 (2016).
[Crossref] [PubMed]

Rebetez, M.

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

Riofrío, C. A.

A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Quantum Control in the Cs 6s1/2 Ground Manifold Using Radio-Frequency and Microwave Magnetic Fields,” Phys. Rev. Lett. 111, 170502 (2013).
[Crossref]

Rochester, S.

Y. Malakyan, S. Rochester, D. Budker, D. Kimball, and V. Yashchuk, “Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition,” Phys. Rev. A 69, 013817 (2004).
[Crossref]

M. Auzinsh, D. Budker, and S. Rochester, Optically polarized atoms: understanding light-atom interactions (Oxford University, 2010).

Rochester, S. M.

T. Zigdon, A. D. Wilson-Gordon, S. Guttikonda, E. J. Bahr, O. Neitzke, S. M. Rochester, and D. Budker, “Nonlinear magneto-optical rotation in the presence of a radio-frequency field,” Opt. Express 18, 25494–25508 (2010).
[Crossref] [PubMed]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion,” Phys. Rev. Lett. 85, 2088–2091 (2000).
[Crossref] [PubMed]

Saffman, M.

M. Ebert, M. Kwon, T. Walker, and M. Saffman, “Coherence and Rydberg Blockade of Atomic Ensemble Qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

Saudan, H.

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

Smith, A.

A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Quantum Control in the Cs 6s1/2 Ground Manifold Using Radio-Frequency and Microwave Magnetic Fields,” Phys. Rev. Lett. 111, 170502 (2013).
[Crossref]

Sosa-Martinez, H.

A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Quantum Control in the Cs 6s1/2 Ground Manifold Using Radio-Frequency and Microwave Magnetic Fields,” Phys. Rev. Lett. 111, 170502 (2013).
[Crossref]

Spielman, I. B.

D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, “Magnetic phases of spin-1 spin-orbit-coupled Bose gases,” Nat. Commun. 7, 10897 (2016).
[Crossref] [PubMed]

Stamper-Kurn, D. M.

F. Fang, R. Olf, S. Wu, H. Kadau, and D. M. Stamper-Kurn, “Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas,” Phys. Rev. Lett. 116, 095301 (2016).
[Crossref] [PubMed]

Tang, H.

B. S. Mathur, H. Tang, and W. Happer, “Light Shifts in the Alkali Atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

Terraciano, M. L.

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77, 063417 (2008).
[Crossref]

Trypogeorgos, D.

D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, “Magnetic phases of spin-1 spin-orbit-coupled Bose gases,” Nat. Commun. 7, 10897 (2016).
[Crossref] [PubMed]

Valdés-Curiel, A.

D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, “Magnetic phases of spin-1 spin-orbit-coupled Bose gases,” Nat. Commun. 7, 10897 (2016).
[Crossref] [PubMed]

Walker, T.

M. Ebert, M. Kwon, T. Walker, and M. Saffman, “Coherence and Rydberg Blockade of Atomic Ensemble Qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

Weis, A.

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Wilson-Gordon, A. D.

Wu, S.

F. Fang, R. Olf, S. Wu, H. Kadau, and D. M. Stamper-Kurn, “Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas,” Phys. Rev. Lett. 116, 095301 (2016).
[Crossref] [PubMed]

Yashchuk, V.

Y. Malakyan, S. Rochester, D. Budker, D. Kimball, and V. Yashchuk, “Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition,” Phys. Rev. A 69, 013817 (2004).
[Crossref]

D. Budker, V. Yashchuk, and M. Zolotorev, “Nonlinear magneto-optic effects with ultranarrow widths,” Phys. Rev. Lett. 81, 5788–5791 (1998).
[Crossref]

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion,” Phys. Rev. Lett. 85, 2088–2091 (2000).
[Crossref] [PubMed]

Zigdon, T.

Zolotorev, M.

D. Budker, V. Yashchuk, and M. Zolotorev, “Nonlinear magneto-optic effects with ultranarrow widths,” Phys. Rev. Lett. 81, 5788–5791 (1998).
[Crossref]

Nat. Commun. (1)

D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, “Magnetic phases of spin-1 spin-orbit-coupled Bose gases,” Nat. Commun. 7, 10897 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

B. S. Mathur, H. Tang, and W. Happer, “Light Shifts in the Alkali Atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

Phys. Rev. A (5)

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77, 063417 (2008).
[Crossref]

G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A. S. Pazgalev, M. Rebetez, H. Saudan, and A. Weis, “Experimental study of laser-detected magnetic resonance based on atomic alignment,” Phys. Rev. A 74, 063415 (2006).
[Crossref]

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Y. Malakyan, S. Rochester, D. Budker, D. Kimball, and V. Yashchuk, “Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition,” Phys. Rev. A 69, 013817 (2004).
[Crossref]

Phys. Rev. Lett. (5)

M. Ebert, M. Kwon, T. Walker, and M. Saffman, “Coherence and Rydberg Blockade of Atomic Ensemble Qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Quantum Control in the Cs 6s1/2 Ground Manifold Using Radio-Frequency and Microwave Magnetic Fields,” Phys. Rev. Lett. 111, 170502 (2013).
[Crossref]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion,” Phys. Rev. Lett. 85, 2088–2091 (2000).
[Crossref] [PubMed]

F. Fang, R. Olf, S. Wu, H. Kadau, and D. M. Stamper-Kurn, “Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas,” Phys. Rev. Lett. 116, 095301 (2016).
[Crossref] [PubMed]

D. Budker, V. Yashchuk, and M. Zolotorev, “Nonlinear magneto-optic effects with ultranarrow widths,” Phys. Rev. Lett. 81, 5788–5791 (1998).
[Crossref]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Other (4)

D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University, 2013).
[Crossref]

M. Auzinsh, D. Budker, and S. Rochester, Optically polarized atoms: understanding light-atom interactions (Oxford University, 2010).

D. Budker, D. F. Kimball, and D. P. DeMille, Atomic physics: an exploration through problems and solutions (Oxford University, 2008), 2nd ed.

S. Rochester, “AtomicDensityMatrix Mathematica package,” http://rochesterscientific.com/ADM/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Typical NMOR data showing a “twist” as the axial magnetic field is swept through zero. This data was taken with a 10.6 μW probe beam of 1 mm diameter that is detuned 27 MHz from the zero-field atomic resonance. A static transverse field of 55 mG is applied parallel to the polarization vector.
Fig. 2
Fig. 2 Experimental configuration. λ/2: half-wave plate, PBS: polarizing beam splitter, PD: photodetectors.
Fig. 3
Fig. 3 (a) Twist’s dependence on the transverse magnetic field strength, lines are numerical simulation and points are experimental data. (b) Summary of twist widths & amplitudes versus the transverse field magnitude. In both cases the light is polarized along the direction of the transverse magnetic field with a fixed optical intensity of 1.03 mW/cm2.
Fig. 4
Fig. 4 Impact of the angle between polarization and BTr (a) Points are Experimental data, while lines are guides for clarity; (b) Numerical simulation. Both have a fixed transverse field of BTr = 48 mG, and a Rabi frequency of 9 MHz.
Fig. 5
Fig. 5 Impact of elliptical polarization. (a) Points are Experimental data, while lines are guides for clarity; (b) Numerical simulation. Both have BTr = 55 mG, and a Rabi frequency of 9 MHz.
Fig. 6
Fig. 6 Experimental data (dots) of the twist’s dependence on optical power with numerical simulation (lines) overlaid. A fixed transverse field of 70 mG is applied parallel to the light polarization. (a) Raw data of axial field sweep at three different optical intensities. (b) The dependence of twist widths and amplitudes on the Rabi frequency.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H = H 0 d E μ B ,
d ρ d t = 1 i [ H , ρ ] 1 2 { ξ , ρ } + Λ ,

Metrics