Abstract

A photoacoustic module (PAM) for methane detection was developed by combining a novel 3.2 μm interband cascade light emitting device (ICLED) with a compact differential photoacoustic cell. The ICLED with a 22-stage interband cascade active core emitted a collimated power of ~700 μW. A concave Al-coat reflector was positioned adjacent to the photoacoustic cell to enhance the gas absorption length. Assembly of the ICLED and reflector with the photoacoustic cell resulted in a robust and portable PAM without any moving parts. The PAM performance was evaluated in terms of operating pressure, sensitivity and linearity. A 1σ detection limit of 3.6 ppmv was achieved with a 1-s integration time.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

Weilin Ye, Chunguang Li, Chuantao Zheng, Nancy P. Sanchez, Aleksander K. Gluszek, Arkadiusz J. Hudzikowski, Lei Dong, Robert J. Griffin, and Frank K. Tittel
Opt. Express 24(15) 16973-16985 (2016)

Two-component gas quartz-enhanced photoacoustic spectroscopy sensor based on time-division multiplexing of distributed-feedback laser driver current

Zongliang Wang, Jun Chang, Cunwei Tian, Yiwen Feng, Cheng Wang, Hao Zhang, Qinduan Zhang, Hefu Li, Zhenbao Feng, Xiukun Zhang, and Longfei Tang
Appl. Opt. 58(31) 8479-8485 (2019)

Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser

Yingchun Cao, Nancy P. Sanchez, Wenzhe Jiang, Robert J. Griffin, Feng Xie, Lawrence C. Hughes, Chung-en Zah, and Frank K. Tittel
Opt. Express 23(3) 2121-2132 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74(1), 486–490 (2003).
    [Crossref]
  2. A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
    [Crossref]
  3. Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38(4), 434–436 (2013).
    [Crossref] [PubMed]
  4. Z. Wang, Q. Wang, J. Y. L. Ching, J. C. Y. Wu, G. F. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sensor. Actuat. Biol. Chem. 246, 710–715 (2017).
  5. P. Patimisco, A. Sampaolo, H. D. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. 2, 169–187 (2017).
  6. Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensor. Actuat. Biol. Chem. 247, 290–295 (2017).
  7. M. Siciliani de Cumis, S. Viciani, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring,” Opt. Express 22(23), 28222–28231 (2014).
    [Crossref] [PubMed]
  8. V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
    [Crossref] [PubMed]
  9. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
    [Crossref]
  10. K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
    [Crossref]
  11. T. Berer, M. Brandstetter, A. Hochreiner, G. Langer, W. Märzinger, P. Burgholzer, and B. Lendl, “Remote mid-infrared photoacoustic spectroscopy with a quantum cascade laser,” Opt. Lett. 40(15), 3476–3479 (2015).
    [Crossref] [PubMed]
  12. R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, ““Differential LED-excited resonant NO2 photoacoustic system,” Sensor. Actuat,” Biol. Chem. 150, 513–516 (2010).
  13. J. Kottmann, J. M. Rey, and M. W. Sigrist, “Mid-Infrared photoacoustic detection of glucose in human skin: towards non-invasive diagnostics,” Sensors (Basel) 16(10), 1663–1677 (2016).
    [Crossref] [PubMed]
  14. J. S. Li, W. D. Chen, and B. L. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
    [Crossref]
  15. L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
    [Crossref] [PubMed]
  16. H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
    [Crossref] [PubMed]
  17. H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).
  18. H. Zheng, L. Dong, A. Sampaolo, H. Wu, P. Patimisco, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Single-tube on-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 41(5), 978–981 (2016).
    [Crossref] [PubMed]
  19. Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
    [Crossref]
  20. K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
    [Crossref] [PubMed]
  21. S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
    [Crossref]
  22. L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
    [Crossref]
  23. Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).
  24. L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. Macpherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15(18), 11219–11224 (2007).
    [Crossref] [PubMed]
  25. S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quant. 21(6), 125–133 (2015).
    [Crossref]
  26. R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17(1), 77–83 (1995).
    [Crossref]
  27. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
    [Crossref]
  28. R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
    [Crossref]
  29. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
    [Crossref] [PubMed]
  30. I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
    [Crossref]
  31. I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
    [Crossref]
  32. L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).
  33. W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
    [Crossref] [PubMed]
  34. C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
    [Crossref]
  35. S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
    [Crossref]
  36. A. A. Petuhov, N. D. Il’inskaya, S. S. Kizhaev, N. D. Stoyanov, and Yu. P. Yakovlev, “Effect of Temperature on the Electroluminescent Properties of mid-IR (λmax=4.4 m) Flip-Chip LEDs Based on an InAs/InAsSbP Heterostructure,” Semicond. 45(11), 1501–1504 (2011).
    [Crossref]
  37. N. C. Das, “Effect of indium mole fraction on infrared light emitting diode (LED) device performance,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 191–194 (2011).
    [Crossref]
  38. S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
    [Crossref]
  39. J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
    [Crossref]
  40. R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
    [Crossref]
  41. C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.
  42. C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
    [Crossref]
  43. http://www.hitran.com
  44. M. Wolff, S. Rhein, H. Bruhns, L. Nähle, M. Fischer, and J. Koeth, “Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm,” Sensor. Actuat. Biol. Chem. 187, 574–577 (2013).
  45. V. Wittstock, L. Scholz, B. Bierer, A. O. Perez, J. Wöllenstein, and S. Palzer, “Design of a LED-based sensor for monitoring the lower explosion limit of methane,” Sensor. Actuat. Biol. Chem. 247, 930–939 (2017).
  46. C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
    [Crossref]
  47. X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).
  48. T. Starecki, “Windowless open photoacoustic Helmholtz cell,” Acta Phys. Pol. A 114(6A), A211–A216 (2008).
    [Crossref]
  49. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization and performance,” Appl. Phys. B 100(3), 627–635 (2010).
    [Crossref]
  50. M. Szakáll, H. Huszár, Z. Bozóki, and G. Szabó, “On the pressure dependent sensitivity of a photoacoustic water vapor detector using a novel modulation method,” Infrared Phys. Technol. 48(3), 192–201 (2006).
    [Crossref]
  51. A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
    [Crossref]

2017 (8)

Z. Wang, Q. Wang, J. Y. L. Ching, J. C. Y. Wu, G. F. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sensor. Actuat. Biol. Chem. 246, 710–715 (2017).

P. Patimisco, A. Sampaolo, H. D. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. 2, 169–187 (2017).

Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensor. Actuat. Biol. Chem. 247, 290–295 (2017).

K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

V. Wittstock, L. Scholz, B. Bierer, A. O. Perez, J. Wöllenstein, and S. Palzer, “Design of a LED-based sensor for monitoring the lower explosion limit of methane,” Sensor. Actuat. Biol. Chem. 247, 930–939 (2017).

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

2016 (6)

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

H. Zheng, L. Dong, A. Sampaolo, H. Wu, P. Patimisco, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Single-tube on-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 41(5), 978–981 (2016).
[Crossref] [PubMed]

J. Kottmann, J. M. Rey, and M. W. Sigrist, “Mid-Infrared photoacoustic detection of glucose in human skin: towards non-invasive diagnostics,” Sensors (Basel) 16(10), 1663–1677 (2016).
[Crossref] [PubMed]

2015 (6)

T. Berer, M. Brandstetter, A. Hochreiner, G. Langer, W. Märzinger, P. Burgholzer, and B. Lendl, “Remote mid-infrared photoacoustic spectroscopy with a quantum cascade laser,” Opt. Lett. 40(15), 3476–3479 (2015).
[Crossref] [PubMed]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quant. 21(6), 125–133 (2015).
[Crossref]

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

2014 (2)

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

M. Siciliani de Cumis, S. Viciani, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring,” Opt. Express 22(23), 28222–28231 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38(4), 434–436 (2013).
[Crossref] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

M. Wolff, S. Rhein, H. Bruhns, L. Nähle, M. Fischer, and J. Koeth, “Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm,” Sensor. Actuat. Biol. Chem. 187, 574–577 (2013).

2011 (5)

A. A. Petuhov, N. D. Il’inskaya, S. S. Kizhaev, N. D. Stoyanov, and Yu. P. Yakovlev, “Effect of Temperature on the Electroluminescent Properties of mid-IR (λmax=4.4 m) Flip-Chip LEDs Based on an InAs/InAsSbP Heterostructure,” Semicond. 45(11), 1501–1504 (2011).
[Crossref]

N. C. Das, “Effect of indium mole fraction on infrared light emitting diode (LED) device performance,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 191–194 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

J. S. Li, W. D. Chen, and B. L. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

2010 (3)

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, ““Differential LED-excited resonant NO2 photoacoustic system,” Sensor. Actuat,” Biol. Chem. 150, 513–516 (2010).

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

2009 (2)

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

2008 (5)

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

T. Starecki, “Windowless open photoacoustic Helmholtz cell,” Acta Phys. Pol. A 114(6A), A211–A216 (2008).
[Crossref]

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

2007 (2)

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. Macpherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15(18), 11219–11224 (2007).
[Crossref] [PubMed]

2006 (2)

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

M. Szakáll, H. Huszár, Z. Bozóki, and G. Szabó, “On the pressure dependent sensitivity of a photoacoustic water vapor detector using a novel modulation method,” Infrared Phys. Technol. 48(3), 192–201 (2006).
[Crossref]

2003 (1)

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74(1), 486–490 (2003).
[Crossref]

2001 (1)

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

1997 (1)

R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
[Crossref]

1995 (1)

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17(1), 77–83 (1995).
[Crossref]

Abell, J.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Ajtai, T.

K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
[Crossref]

An, Y. P.

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

Axner, O.

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

Becker, S.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

Belenky, G.

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quant. 21(6), 125–133 (2015).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Belkin, M. A.

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quant. 21(6), 125–133 (2015).
[Crossref]

Berer, T.

Bernhardt, R.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, ““Differential LED-excited resonant NO2 photoacoustic system,” Sensor. Actuat,” Biol. Chem. 150, 513–516 (2010).

Bewley, W. W.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.

Bierer, B.

V. Wittstock, L. Scholz, B. Bierer, A. O. Perez, J. Wöllenstein, and S. Palzer, “Design of a LED-based sensor for monitoring the lower explosion limit of methane,” Sensor. Actuat. Biol. Chem. 247, 930–939 (2017).

Boggess, T. F.

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

Borri, S.

Böttger, S.

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

Bozóki, Z.

K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
[Crossref]

M. Szakáll, H. Huszár, Z. Bozóki, and G. Szabó, “On the pressure dependent sensitivity of a photoacoustic water vapor detector using a novel modulation method,” Infrared Phys. Technol. 48(3), 192–201 (2006).
[Crossref]

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Brandstetter, M.

Bruhns, H.

M. Wolff, S. Rhein, H. Bruhns, L. Nähle, M. Fischer, and J. Koeth, “Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm,” Sensor. Actuat. Biol. Chem. 187, 574–577 (2013).

Burgholzer, P.

Bychkov, K. V.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Canedy, C. L.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.

Cao, Y.

Chen, K.

Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensor. Actuat. Biol. Chem. 247, 290–295 (2017).

Chen, W.

Chen, W. D.

J. S. Li, W. D. Chen, and B. L. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

Ching, J. Y. L.

Z. Wang, Q. Wang, J. Y. L. Ching, J. C. Y. Wu, G. F. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sensor. Actuat. Biol. Chem. 246, 710–715 (2017).

D’Amato, F.

Das, N. C.

N. C. Das, “Effect of indium mole fraction on infrared light emitting diode (LED) device performance,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 191–194 (2011).
[Crossref]

De Natale, P.

Dong, L.

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, H. D. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. 2, 169–187 (2017).

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

H. Zheng, L. Dong, A. Sampaolo, H. Wu, P. Patimisco, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Single-tube on-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 41(5), 978–981 (2016).
[Crossref] [PubMed]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

Fischer, M.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

M. Wolff, S. Rhein, H. Bruhns, L. Nähle, M. Fischer, and J. Koeth, “Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm,” Sensor. Actuat. Biol. Chem. 187, 574–577 (2013).

Foltynowicz, A.

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

Gao, W. Z.

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

Gao, X.

Gayraud, N.

George, A. K.

Gluszek, A. K.

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

Gong, Z. F.

Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensor. Actuat. Biol. Chem. 247, 290–295 (2017).

González, M. G.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, ““Differential LED-excited resonant NO2 photoacoustic system,” Sensor. Actuat,” Biol. Chem. 150, 513–516 (2010).

Griffin, R. J.

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

Gulyás, G.

K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
[Crossref]

Guo, X.

Hand, D. P.

He, Y.

Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Hess, P.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Hildebrandt, L.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

Ho, H. L.

Hochreiner, A.

Höfling, S.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

Hosoda, T.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Hudson, A.

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

Hudzikowski, A. J.

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

Huszár, H.

M. Szakáll, H. Huszár, Z. Bozóki, and G. Szabó, “On the pressure dependent sensitivity of a photoacoustic water vapor detector using a novel modulation method,” Infrared Phys. Technol. 48(3), 192–201 (2006).
[Crossref]

Il’inskaya, N. D.

A. A. Petuhov, N. D. Il’inskaya, S. S. Kizhaev, N. D. Stoyanov, and Yu. P. Yakovlev, “Effect of Temperature on the Electroluminescent Properties of mid-IR (λmax=4.4 m) Flip-Chip LEDs Based on an InAs/InAsSbP Heterostructure,” Semicond. 45(11), 1501–1504 (2011).
[Crossref]

Jia, S.

Jia, S. T.

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

Jin, W.

Jung, S.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Kamp, M.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

Kapitanov, V. A.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Karapuzikov, A. I.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Kim, C. S.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.

Kim, M.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.

Kipshidze, G.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Kizhaev, S. S.

A. A. Petuhov, N. D. Il’inskaya, S. S. Kizhaev, N. D. Stoyanov, and Yu. P. Yakovlev, “Effect of Temperature on the Electroluminescent Properties of mid-IR (λmax=4.4 m) Flip-Chip LEDs Based on an InAs/InAsSbP Heterostructure,” Semicond. 45(11), 1501–1504 (2011).
[Crossref]

Knight, J. C.

Koeth, J.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

M. Wolff, S. Rhein, H. Bruhns, L. Nähle, M. Fischer, and J. Koeth, “Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm,” Sensor. Actuat. Biol. Chem. 187, 574–577 (2013).

Köhring, M.

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

Kornaszewski, L. W.

Koslowski, N.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

Kosterev, A. A.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

Kottmann, J.

J. Kottmann, J. M. Rey, and M. W. Sigrist, “Mid-Infrared photoacoustic detection of glucose in human skin: towards non-invasive diagnostics,” Sensors (Basel) 16(10), 1663–1677 (2016).
[Crossref] [PubMed]

Langer, G.

Larrabee, D. C.

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

Lee, C. M.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Legge, M.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

Lendl, B.

Lewicki, R.

Li, C.

Li, C. G.

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

Li, J. S.

J. S. Li, W. D. Chen, and B. L. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

Li, L.

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

Lin, C. H.

R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
[Crossref]

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Liu, K.

Liu, X. L.

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

Ma, J.

Ma, W.

Ma, W. G.

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

Ma, Y. F.

Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Macpherson, W. N.

Märzinger, W.

Merritt, C. D.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.

Meyer, J.

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

Meyer, J. R.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.

Miklós, A.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Murray, L. M.

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

Murry, S. J.

R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
[Crossref]

Nähle, L.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

M. Wolff, S. Rhein, H. Bruhns, L. Nähle, M. Fischer, and J. Koeth, “Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm,” Sensor. Actuat. Biol. Chem. 187, 574–577 (2013).

Nolde, J. A.

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

Norton, D. T.

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

Olesberg, J. T.

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

Palzer, S.

V. Wittstock, L. Scholz, B. Bierer, A. O. Perez, J. Wöllenstein, and S. Palzer, “Design of a LED-based sensor for monitoring the lower explosion limit of methane,” Sensor. Actuat. Biol. Chem. 247, 930–939 (2017).

Patimisco, P.

Pei, S. S.

R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
[Crossref]

Peng, W.

Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensor. Actuat. Biol. Chem. 247, 290–295 (2017).

Pennetta, R.

Perez, A. O.

V. Wittstock, L. Scholz, B. Bierer, A. O. Perez, J. Wöllenstein, and S. Palzer, “Design of a LED-based sensor for monitoring the lower explosion limit of methane,” Sensor. Actuat. Biol. Chem. 247, 930–939 (2017).

Petuhov, A. A.

A. A. Petuhov, N. D. Il’inskaya, S. S. Kizhaev, N. D. Stoyanov, and Yu. P. Yakovlev, “Effect of Temperature on the Electroluminescent Properties of mid-IR (λmax=4.4 m) Flip-Chip LEDs Based on an InAs/InAsSbP Heterostructure,” Semicond. 45(11), 1501–1504 (2011).
[Crossref]

Peuriot, A.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, ““Differential LED-excited resonant NO2 photoacoustic system,” Sensor. Actuat,” Biol. Chem. 150, 513–516 (2010).

Pintér, M.

K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
[Crossref]

Ponomarev, Y. N.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Prineas, J. P.

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

Provence, S.

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

Reid, D. T.

Ren, W.

Z. Wang, Q. Wang, J. Y. L. Ching, J. C. Y. Wu, G. F. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sensor. Actuat. Biol. Chem. 246, 710–715 (2017).

Rey, J. M.

J. Kottmann, J. M. Rey, and M. W. Sigrist, “Mid-Infrared photoacoustic detection of glucose in human skin: towards non-invasive diagnostics,” Sensors (Basel) 16(10), 1663–1677 (2016).
[Crossref] [PubMed]

Rhein, S.

M. Wolff, S. Rhein, H. Bruhns, L. Nähle, M. Fischer, and J. Koeth, “Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm,” Sensor. Actuat. Biol. Chem. 187, 574–577 (2013).

Ricker, R. J.

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

Rößner, K.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

Sampaolo, A.

Sanchez, N. P.

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

Santiago, G. D.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, ““Differential LED-excited resonant NO2 photoacoustic system,” Sensor. Actuat,” Biol. Chem. 150, 513–516 (2010).

Scamarcio, G.

Schade, W.

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

Scheuermann, J.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

Schmidt, F. M.

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

Scholz, L.

V. Wittstock, L. Scholz, B. Bierer, A. O. Perez, J. Wöllenstein, and S. Palzer, “Design of a LED-based sensor for monitoring the lower explosion limit of methane,” Sensor. Actuat. Biol. Chem. 247, 930–939 (2017).

Sherstov, I. V.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Shterengas, L.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Siciliani de Cumis, M.

Sigrist, M. W.

J. Kottmann, J. M. Rey, and M. W. Sigrist, “Mid-Infrared photoacoustic detection of glucose in human skin: towards non-invasive diagnostics,” Sensors (Basel) 16(10), 1663–1677 (2016).
[Crossref] [PubMed]

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74(1), 486–490 (2003).
[Crossref]

Simon, K. A.

K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
[Crossref]

Slezak, V. B.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, ““Differential LED-excited resonant NO2 photoacoustic system,” Sensor. Actuat,” Biol. Chem. 150, 513–516 (2010).

Snyder, D.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Song, Z. W.

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

Song, Z. Y.

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

Spagnolo, V.

Starecki, T.

T. Starecki, “Windowless open photoacoustic Helmholtz cell,” Acta Phys. Pol. A 114(6A), A211–A216 (2008).
[Crossref]

Stone, J. M.

Stoyanov, N. D.

A. A. Petuhov, N. D. Il’inskaya, S. S. Kizhaev, N. D. Stoyanov, and Yu. P. Yakovlev, “Effect of Temperature on the Electroluminescent Properties of mid-IR (λmax=4.4 m) Flip-Chip LEDs Based on an InAs/InAsSbP Heterostructure,” Semicond. 45(11), 1501–1504 (2011).
[Crossref]

Suchalkin, S.

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quant. 21(6), 125–133 (2015).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Sun, R.

Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Szabó, G.

K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
[Crossref]

M. Szakáll, H. Huszár, Z. Bozóki, and G. Szabó, “On the pressure dependent sensitivity of a photoacoustic water vapor detector using a novel modulation method,” Infrared Phys. Technol. 48(3), 192–201 (2006).
[Crossref]

Szakáll, M.

M. Szakáll, H. Huszár, Z. Bozóki, and G. Szabó, “On the pressure dependent sensitivity of a photoacoustic water vapor detector using a novel modulation method,” Infrared Phys. Technol. 48(3), 192–201 (2006).
[Crossref]

Thomazy, D.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

Tittel, F. K.

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, H. D. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. 2, 169–187 (2017).

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

H. Zheng, L. Dong, A. Sampaolo, H. Wu, P. Patimisco, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Single-tube on-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 41(5), 978–981 (2016).
[Crossref] [PubMed]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

Utry, N.

K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
[Crossref]

Vasiliev, V. A.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Viciani, S.

Vitiello, M. S.

von Edlinger, M.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

Vurgaftman, I.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.

Wang, Q.

Z. Wang, Q. Wang, J. Y. L. Ching, J. C. Y. Wu, G. F. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sensor. Actuat. Biol. Chem. 246, 710–715 (2017).

Wang, Y. D.

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

Wang, Z.

Z. Wang, Q. Wang, J. Y. L. Ching, J. C. Y. Wu, G. F. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sensor. Actuat. Biol. Chem. 246, 710–715 (2017).

Warren, M. V.

C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.

Weih, R.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

Westerfeld, D.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Willer, U.

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

William, W. Yu.

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

Wittstock, V.

V. Wittstock, L. Scholz, B. Bierer, A. O. Perez, J. Wöllenstein, and S. Palzer, “Design of a LED-based sensor for monitoring the lower explosion limit of methane,” Sensor. Actuat. Biol. Chem. 247, 930–939 (2017).

Wolff, M.

M. Wolff, S. Rhein, H. Bruhns, L. Nähle, M. Fischer, and J. Koeth, “Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm,” Sensor. Actuat. Biol. Chem. 187, 574–577 (2013).

Wöllenstein, J.

V. Wittstock, L. Scholz, B. Bierer, A. O. Perez, J. Wöllenstein, and S. Palzer, “Design of a LED-based sensor for monitoring the lower explosion limit of methane,” Sensor. Actuat. Biol. Chem. 247, 930–939 (2017).

Wu, H.

H. Zheng, L. Dong, A. Sampaolo, H. Wu, P. Patimisco, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Single-tube on-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 41(5), 978–981 (2016).
[Crossref] [PubMed]

R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
[Crossref]

Wu, H. P.

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

Wu, J. C. Y.

Z. Wang, Q. Wang, J. Y. L. Ching, J. C. Y. Wu, G. F. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sensor. Actuat. Biol. Chem. 246, 710–715 (2017).

Wysocki, G.

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

Xiao, L. T.

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

Yakovlev, Yu. P.

A. A. Petuhov, N. D. Il’inskaya, S. S. Kizhaev, N. D. Stoyanov, and Yu. P. Yakovlev, “Effect of Temperature on the Electroluminescent Properties of mid-IR (λmax=4.4 m) Flip-Chip LEDs Based on an InAs/InAsSbP Heterostructure,” Semicond. 45(11), 1501–1504 (2011).
[Crossref]

Yang, B. H.

R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
[Crossref]

Yang, R. Q.

R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
[Crossref]

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17(1), 77–83 (1995).
[Crossref]

Yang, Y.

Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensor. Actuat. Biol. Chem. 247, 290–295 (2017).

Ye, W.

Ye, W. L.

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

Yi, H.

Yin, W.

Yin, W. B.

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

Yin, X.

Yin, X. K.

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

Yu, B. L.

J. S. Li, W. D. Chen, and B. L. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

Yu, Q. X.

Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensor. Actuat. Biol. Chem. 247, 290–295 (2017).

Yu, X.

Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Yu, Y. J.

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

Zeller, W.

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

Zhang, D.

R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
[Crossref]

Zhang, G. F.

Z. Wang, Q. Wang, J. Y. L. Ching, J. C. Y. Wu, G. F. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sensor. Actuat. Biol. Chem. 246, 710–715 (2017).

Zhang, J. B.

Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Zhang, L.

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

H. Zheng, L. Dong, A. Sampaolo, H. Wu, P. Patimisco, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Single-tube on-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 41(5), 978–981 (2016).
[Crossref] [PubMed]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

Zhang, L. G.

Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Zhang, W.

Zhang, Y.

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

Zheng, C.

Zheng, C. T.

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

Zheng, H.

Zheng, H. D.

P. Patimisco, A. Sampaolo, H. D. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. 2, 169–187 (2017).

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

Zhou, X. L.

Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensor. Actuat. Biol. Chem. 247, 290–295 (2017).

Acta Phys. Pol. A (1)

T. Starecki, “Windowless open photoacoustic Helmholtz cell,” Acta Phys. Pol. A 114(6A), A211–A216 (2008).
[Crossref]

Adv. Phys. (1)

P. Patimisco, A. Sampaolo, H. D. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. 2, 169–187 (2017).

Appl. Phys. B (4)

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

Appl. Phys. Lett. (6)

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

J. Abell, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. Meyer, and M. Kim, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature,” Appl. Phys. Lett. 104(26), 261103 (2014).
[Crossref]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Y. F. Ma, Y. He, L. G. Zhang, X. Yu, J. B. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

R. Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71(17), 2409–2411 (1997).
[Crossref]

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Appl. Spectrosc. Rev. (1)

J. S. Li, W. D. Chen, and B. L. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

Biol. Chem. (1)

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, ““Differential LED-excited resonant NO2 photoacoustic system,” Sensor. Actuat,” Biol. Chem. 150, 513–516 (2010).

IEEE J. Quantum Electron. (1)

R. J. Ricker, A. Hudson, S. Provence, D. T. Norton, J. T. Olesberg, L. M. Murray, J. P. Prineas, and T. F. Boggess, “Dual-color InAs/GaSb cascaded superlattice light-emitting diodes,” IEEE J. Quantum Electron. 51(12), 3200406 (2015).
[Crossref]

IEEE J. Sel. Top. Quant. (2)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quant. 19(4), 1200210 (2013).
[Crossref]

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quant. 21(6), 125–133 (2015).
[Crossref]

IEEE Photonic. Tech. L. (1)

C. T. Zheng, W. L. Ye, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, C. G. Li, L. Dong, R. J. Griffin, and F. K. Tittel, “Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers,” IEEE Photonic. Tech. L. 28(21), 2351–2354 (2016).
[Crossref]

IEEE Sens. J. (1)

L. Hildebrandt, R. Weih, M. Legge, N. Koslowski, M. Fischer, M. von Edlinger, J. Scheuermann, S. Becker, K. Rößner, W. Zeller, L. Nähle, J. Koeth, M. Kamp, and S. Höfling, “Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR,” IEEE Sens. J. 2016, 1–3 (2016).

Infrared Phys. Technol. (1)

M. Szakáll, H. Huszár, Z. Bozóki, and G. Szabó, “On the pressure dependent sensitivity of a photoacoustic water vapor detector using a novel modulation method,” Infrared Phys. Technol. 48(3), 192–201 (2006).
[Crossref]

J. Aerosol Sci. (1)

K. A. Simon, T. Ajtai, G. Gulyás, N. Utry, M. Pintér, G. Szabó, and Z. Bozóki, “Accuracy assessment of aerosol source apportionment by dual wavelength photoacoustic measurements,” J. Aerosol Sci. 104, 10–15 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D Appl. Phys. 48(12), 123001 (2015).
[Crossref]

J. Vac. Sci. Technol. B (1)

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26(3), 1160–1162 (2008).
[Crossref]

Nat. Commun. (2)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Calibration-free fast quartz-enhanced photoacoustic spectroscopy based on beat frequency effect for continuous trace gas monitoring,” Nat. Commun. 8, 15331 (2017).
[Crossref] [PubMed]

New J. Phys. (1)

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Opt. Eng. (1)

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

N. C. Das, “Effect of indium mole fraction on infrared light emitting diode (LED) device performance,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 191–194 (2011).
[Crossref]

Rev. Sci. Instrum. (2)

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74(1), 486–490 (2003).
[Crossref]

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Semicond. (1)

A. A. Petuhov, N. D. Il’inskaya, S. S. Kizhaev, N. D. Stoyanov, and Yu. P. Yakovlev, “Effect of Temperature on the Electroluminescent Properties of mid-IR (λmax=4.4 m) Flip-Chip LEDs Based on an InAs/InAsSbP Heterostructure,” Semicond. 45(11), 1501–1504 (2011).
[Crossref]

Sensor. Actuat. Biol. Chem. (7)

Y. Zhang, W. Z. Gao, Z. Y. Song, Y. P. An, L. Li, Z. W. Song, W. Yu. William, and Y. D. Wang, ““Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sensor. Actuat. Biol. Chem. 147, 5–9 (2010).

Z. Wang, Q. Wang, J. Y. L. Ching, J. C. Y. Wu, G. F. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sensor. Actuat. Biol. Chem. 246, 710–715 (2017).

Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensor. Actuat. Biol. Chem. 247, 290–295 (2017).

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sensor. Actuat. Biol. Chem. 208, 173–179 (2015).

X. K. Yin, L. Dong, H. P. Wu, H. D. Zheng, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sensor. Actuat. Biol. Chem. 247, 329–335 (2017).

M. Wolff, S. Rhein, H. Bruhns, L. Nähle, M. Fischer, and J. Koeth, “Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm,” Sensor. Actuat. Biol. Chem. 187, 574–577 (2013).

V. Wittstock, L. Scholz, B. Bierer, A. O. Perez, J. Wöllenstein, and S. Palzer, “Design of a LED-based sensor for monitoring the lower explosion limit of methane,” Sensor. Actuat. Biol. Chem. 247, 930–939 (2017).

Sensors (Basel) (1)

J. Kottmann, J. M. Rey, and M. W. Sigrist, “Mid-Infrared photoacoustic detection of glucose in human skin: towards non-invasive diagnostics,” Sensors (Basel) 16(10), 1663–1677 (2016).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17(1), 77–83 (1995).
[Crossref]

Other (2)

http://www.hitran.com

C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and M. Kim, “Improved mid-infrared interband cascade light emitting devices,” to be published.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The ICLED emission spectra at 70 mA and 120 mA (T = 25 °C). The inset is a photograph of the ICLED; (b) CH4 absorption band from 2500 cm−1 to 4000 cm−1, according to the HITRAN database.
Fig. 2
Fig. 2 Comparison of the output power from the 22-stage ICLED with that from an earlier 15-stage device (processed with the same mesa diameter of 400 μm for the study reported in [38]) as a function of injection current. Both results represent the power collected following collimation by an aspheric lens, which is less than the total power emitted in a Lambertian profile.
Fig. 3
Fig. 3 Spot size of the collimated ICLED output beam as a function of working distance. The inset is an MIR camera image of the beam spot at a working distance of 110 mm, T = 25 °C and I = 120 mA.
Fig. 4
Fig. 4 (a) Schematic diagram of the differential photoacoustic cell; (b) CAD view of laser-embedded photoacoustic module (PAM).
Fig. 5
Fig. 5 Normalized fundamental and 1st longitudinal resonance curves of the photoacoustic cell.
Fig. 6
Fig. 6 Experimental setup of the photoacoustic sensor system.
Fig. 7
Fig. 7 Comparison of the signals for single-pass and double-pass absorption.
Fig. 8
Fig. 8 Dependence of the photoacoustic signal amplitude on gas pressure.
Fig. 9
Fig. 9 (a) Photoacoustic signal at the different CH4 concentration levels; (b) Linearity of the sensor system response.

Metrics