Abstract

With the development of highly densified photonic integrated circuits, the optical cross nodes number exhibits dramatically increasing. Not only efficient but also ultra-compact waveguide crossings are required to materialize the full potential of silicon photonics for on-chip optical intercross connect. In this work, we proposed several inverse-designed 4 × 4, 5 × 5 and 6 × 6 star-crossings based on the photonic-crystal-like (PhC-like) subwavelength structures, which have ultra-high port density of about 7.1 μm2/port, 5.83 μm2/port and 7.3 μm2/port respectively. Moreover, the star-crossings are practically fabricated and experimentally characterized. The average measured insertion losses (ILs) are less than 0.75, 0.9 dB and 1.5 dB, while the crosstalks are sub-22.5 dB, −20 dB and −18 dB for other output ports over 60 nm bandwidth centered at 1550 nm wavelength.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm

M-Said Rouifed, Callum G. Littlejohns, Guo X. Tina, Haodong Qiu, Jordi Soler Penades, Milos Nedeljkovic, Zecen Zhang, Chongyong Liu, David J. Thomson, Goran Z. Mashanovich, Graham T. Reed, and Hong Wang
Opt. Express 25(10) 10893-10900 (2017)

High performance ultra-compact SOI waveguide crossing

Hai-Long Han, He Li, Xiao-Pei Zhang, Ang Liu, Tian-Ying Lin, Ze Chen, Hai-Bin Lv, Ming-Hui Lu, Xiao-Ping Liu, and Yan-Feng Chen
Opt. Express 26(20) 25602-25610 (2018)

Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities

Huanying Zhou, Ciyuan Qiu, Xinhong Jiang, Qingming Zhu, Yu He, Yong Zhang, Yikai Su, and Richard Soref
Photon. Res. 5(2) 108-112 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 32(19), 2801–2803 (2007).
    [Crossref] [PubMed]
  2. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
    [Crossref]
  3. W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 32(19), 2801–2803 (2007).
    [Crossref] [PubMed]
  4. H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photonics Technol. Lett. 18(21), 2260–2262 (2006).
    [Crossref]
  5. Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
    [Crossref]
  6. A. M. Jones, C. T. DeRose, A. L. Lentine, D. C. Trotter, A. L. Starbuck, and R. A. Norwood, “Ultra-low crosstalk, CMOS compatible waveguide crossings for densely integrated photonic interconnection networks,” Opt. Express 21(10), 12002–12013 (2013).
    [Crossref] [PubMed]
  7. Y. Zhang, A. Hosseini, X. Xu, D. Kwong, and R. T. Chen, “Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers,” Opt. Lett. 38(18), 3608–3611 (2013).
    [Crossref] [PubMed]
  8. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010).
    [Crossref] [PubMed]
  9. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett. 34(18), 2760–2762 (2009).
    [Crossref] [PubMed]
  10. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photonics Technol. Lett. 25(5), 422–425 (2013).
    [Crossref]
  11. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
    [Crossref] [PubMed]
  12. T. Niwa, H. Hasegawa, and K. Sato, “A 270 x 270 Optical Cross-connect Switch Utilizing Wavelength Routing with Cascaded AWGs,” in Optical Fiber Communication Conf./Nat.Fiber Optic Engineers Conf.2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1A.3.
    [Crossref]
  13. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  14. B. Shen, P. Wang, R. Polson, and R. Menon, “Q”An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  15. A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2015).
    [Crossref] [PubMed]
  16. L. Lu, D. Liu, F. Zhou, D. Li, M. Cheng, L. Deng, S. Fu, J. Xia, and M. Zhang, “Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures,” Opt. Lett. 41(21), 5051–5054 (2016).
    [Crossref] [PubMed]
  17. Lumerical FDTD solutions, https://www.lumerical.com .
  18. W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett. 96(11), 111114 (2010).
    [Crossref]
  19. G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian Beams on a Silicon-on-Insulator Chip Using Integrated Optical Lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
    [Crossref]
  20. J. Zou, Y. Yu, and X. Zhang, “Single step etched two dimensional grating coupler based on the SOI platform,” Opt. Express 23(25), 32490–32495 (2015).
    [Crossref] [PubMed]
  21. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [Crossref] [PubMed]

2016 (1)

2015 (5)

J. Zou, Y. Yu, and X. Zhang, “Single step etched two dimensional grating coupler based on the SOI platform,” Opt. Express 23(25), 32490–32495 (2015).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “Q”An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2015).
[Crossref] [PubMed]

Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
[Crossref]

2014 (1)

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian Beams on a Silicon-on-Insulator Chip Using Integrated Optical Lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

2013 (5)

2010 (2)

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett. 96(11), 111114 (2010).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (2)

2006 (1)

H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photonics Technol. Lett. 18(21), 2260–2262 (2006).
[Crossref]

2004 (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Baba, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2015).
[Crossref] [PubMed]

Baehr-Jones, T.

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photonics Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

Baets, R.

Bock, P. J.

Bogaerts, W.

Brimont, A.

Cheben, P.

Chen, H.

H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photonics Technol. Lett. 18(21), 2260–2262 (2006).
[Crossref]

Chen, L.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett. 96(11), 111114 (2010).
[Crossref]

Chen, R. T.

Cheng, M.

Cuesta, F.

Delâge, A.

Deng, L.

Densmore, A.

DeRose, C. T.

Ding, R.

Ding, W.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett. 96(11), 111114 (2010).
[Crossref]

Ding, Y.

Dumon, P.

Fu, S.

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Galán, J. V.

Galland, C.

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photonics Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Griol, A.

Håkansson, A.

Hall, T. J.

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Hochberg, M.

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photonics Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

Hosseini, A.

Janz, S.

Jiang, X.

Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
[Crossref]

Jones, A. M.

Kwong, D.

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2015).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Lapointe, J.

Lentine, A. L.

Li, D.

Li, Y.

Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
[Crossref]

Lim, A. E.

Lim, A. E.-J.

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photonics Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Liu, D.

Liu, Y.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett. 96(11), 111114 (2010).
[Crossref]

Lo, G. Q.

Lo, G.-Q.

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photonics Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2015).
[Crossref] [PubMed]

Lu, L.

Ma, Y.

Martí, J.

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “Q”An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Mitchell, A.

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian Beams on a Silicon-on-Insulator Chip Using Integrated Optical Lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

Nguyen, T. G.

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian Beams on a Silicon-on-Insulator Chip Using Integrated Optical Lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

Norwood, R. A.

Novack, A.

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Ou, H.

Petykiewicz, J.

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2015).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Peucheret, C.

Piggott, A. Y.

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2015).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “Q”An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Poon, A. W.

H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photonics Technol. Lett. 18(21), 2260–2262 (2006).
[Crossref]

Ren, G.

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian Beams on a Silicon-on-Insulator Chip Using Integrated Optical Lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

Sanchis, P.

Schmid, J. H.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “Q”An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Starbuck, A. L.

Sun, X.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett. 96(11), 111114 (2010).
[Crossref]

Tang, D.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett. 96(11), 111114 (2010).
[Crossref]

Thourhout, D. V.

Trotter, D. C.

Van Thourhout, D.

Villalba, P.

Vuckovic, J.

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2015).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “Q”An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, W.

Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
[Crossref]

Xia, J.

Xu, C.

Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
[Crossref]

Xu, D.-X.

Xu, X.

Yang, J.

Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
[Crossref]

Yang, S.

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photonics Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

Yu, H.

Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
[Crossref]

Yu, Y.

Zeng, C.

Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
[Crossref]

Zhang, M.

Zhang, X.

Zhang, Y.

Zhou, F.

Zou, J.

Appl. Phys. Lett. (1)

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett. 96(11), 111114 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian Beams on a Silicon-on-Insulator Chip Using Integrated Optical Lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photonics Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photonics Technol. Lett. 18(21), 2260–2262 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Nat. Photonics (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “Q”An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Opt. Commun. (1)

Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang, “Hybrid plasmonic waveguide crossing based on the multimode interference effect,” Opt. Commun. 335, 86–89 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Sci. Rep. (1)

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2015).
[Crossref] [PubMed]

Other (2)

Lumerical FDTD solutions, https://www.lumerical.com .

T. Niwa, H. Hasegawa, and K. Sato, “A 270 x 270 Optical Cross-connect Switch Utilizing Wavelength Routing with Cascaded AWGs,” in Optical Fiber Communication Conf./Nat.Fiber Optic Engineers Conf.2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1A.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a-b) The illustrations of a 4 × 4 intercross employing 6 conventional 2 × 2 crossings and only 1 single-node star-crossing respectively. (c) A top view of the proposed 4 × 4 star-crossing.
Fig. 2
Fig. 2 (a) The electric field distribution of the device in Fig. 1(b). (b) The illustration of a 3-lens system.
Fig. 3
Fig. 3 (a) The illustration of the holes’ combination rules; (b) are the preset initial pattern of the simulation for the 4 × 4 star-crossing; (c-d) are the optimum patterns for preset and random initials; (e) shows the transmittances of devices in (c) and (d) with solid and dashed lines respectively.
Fig. 4
Fig. 4 (a) and (b) are the real/imaginary parts of the simulated electric field distributions of the optimized device with etching depth of 140 nm and 200 nm at 1550 nm wavelength respectively.
Fig. 5
Fig. 5 (a)-(b) The simulated transmittances and reflections of the optimized devices with different etching depths of 140 nm (dot dash), 160 nm (long dash), 180 nm (short dash) and 200 nm (solid) respectively. (c) depicts the normalized Poynting flux along the center symmetric axis of the optimized devices at 1550 nm wavelength respectively.
Fig. 6
Fig. 6 (a), (b) and (e) are the top views of the optimized devices with 8, 10 and 12 ports. (b), (d) and (f) are the transmittances of the straight output ports and the side output ports of the left devices respectively.
Fig. 7
Fig. 7 (a)-(c) The SEM pictures of the fabricated 4 × 4, 5 × 5 and 6 × 6 star-crossings respectively.
Fig. 8
Fig. 8 (a), (c) and (e) are the measured transmittances of a single device (in black) and the average transmittance of a single crossing (in orange) for the 4 × 4, 5 × 5 and 6 × 6 star-crossings respectively. (b), (d) and (f) show the crosstalks of the side output ports of each device respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α = 2 x 1 sin ( π 2 M )
β = [ x 2 cot ( π 2 M ) x 1 ] 2 + y 2
γ = [ x 1 + x 2 y cot ( π 2 M ) ] 2 + y 2
F O M = 1 1 N N ( 1 t )

Metrics