Abstract

Photonic microwave generation based on period-one dynamics of an optically injected VCSEL has been study experimentally. The results have shown that the frequency of the generated microwave signal can be broadly tunable through the adjustment of the injection power and the frequency detuning. Strong optical injection power and higher frequency detuning are favorable for obtaining a high frequency microwave signal. These results are similar to those found in systems based on distributed feedback lasers and quantum dot lasers. The variation of the microwave power at the fundamental frequency and the second-harmonic distortion have also been characterized.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation of photonic microwave generation in an optically injected semiconductor laser subject to filtered optical feedback

Chenpeng Xue, Songkun Ji, Yanhua Hong, Ning Jiang, Hongqiang Li, and Kun Qiu
Opt. Express 27(4) 5065-5082 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
    [Crossref]
  2. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
    [Crossref]
  3. S.-C. Chan, S.-K. Hwang, and J.-M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [Crossref] [PubMed]
  4. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  5. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  6. Y.-S. Juan and F.-Y. Lin, “Photonic Generation of Broadly Tunable Microwave Signals Utilizing a Dual-Beam Optically Injected Semiconductor Laser,” IEEE Photonics J. 3(4), 644–650 (2011).
    [Crossref]
  7. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18(10), 1355–1363 (2000).
    [Crossref]
  8. D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
    [Crossref]
  9. X.-Q. Qi and J.-M. Liu, “Photonic Microwave Applications of the Dynamics of Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
    [Crossref]
  10. T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
    [Crossref]
  11. J.-P. Zhuang and S.-C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
    [Crossref] [PubMed]
  12. C. Cui, X. Fu, and S.-C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34(24), 3821–3823 (2009).
    [Crossref] [PubMed]
  13. L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express 24(16), 18252–18265 (2016).
    [Crossref] [PubMed]
  14. T. B. Simpson, J.-M. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
    [Crossref] [PubMed]
  15. A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
    [Crossref]
  16. S.-C. Chan, S.-K. Hwang, and J.-M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31(15), 2254–2256 (2006).
    [Crossref] [PubMed]
  17. C. Wang, R. Raghunathan, K. Schires, S.-C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
    [Crossref] [PubMed]
  18. C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection Locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
    [Crossref]
  19. F. Koyama, “Recent Advances of VCSEL Photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
    [Crossref]
  20. D. Parekh, X. Zhao, W. Hofmann, M. C. Amann, L. A. Zenteno, and C. J. Chang-Hasnain, “Greatly enhanced modulation response of injection-locked multimode VCSELs,” Opt. Express 16(26), 21582–21586 (2008).
    [Crossref] [PubMed]
  21. A. Quirce, A. Valle, H. Lin, D. W. Pierce, and Y. Zhang, “Photonic generation of high-frequency microwave signals utilizing a multi-transverse-mode vertical-cavity surface-emitting laser subject to two-frequency orthogonal optical injection,” J. Opt. Soc. Am. B 29(12), 3259–3270 (2012).
    [Crossref]
  22. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20(12), 13390–13401 (2012).
    [Crossref] [PubMed]
  23. P. Perez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection,” IEEE Photonics J. 7(1), 5500614 (2015).
    [Crossref]
  24. Y. Zhou, Z.-M. Wu, L. Fan, B. Sun, Y. He, and G.-Q. Xia, “Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection,” Wuli Xuebao 64(20), 204203 (2015).
  25. B. Sun, J.-G. Wu, S.-T. Wang, Z.-M. Wu, and G.-Q. Xia, “Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser,” Wuli Xuebao 65(1), 014207 (2016).

2016 (4)

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express 24(16), 18252–18265 (2016).
[Crossref] [PubMed]

C. Wang, R. Raghunathan, K. Schires, S.-C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

B. Sun, J.-G. Wu, S.-T. Wang, Z.-M. Wu, and G.-Q. Xia, “Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser,” Wuli Xuebao 65(1), 014207 (2016).

2015 (2)

P. Perez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection,” IEEE Photonics J. 7(1), 5500614 (2015).
[Crossref]

Y. Zhou, Z.-M. Wu, L. Fan, B. Sun, Y. He, and G.-Q. Xia, “Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection,” Wuli Xuebao 64(20), 204203 (2015).

2014 (1)

T. B. Simpson, J.-M. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

2013 (3)

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

J.-P. Zhuang and S.-C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

X.-Q. Qi and J.-M. Liu, “Photonic Microwave Applications of the Dynamics of Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

Y.-S. Juan and F.-Y. Lin, “Photonic Generation of Broadly Tunable Microwave Signals Utilizing a Dual-Beam Optically Injected Semiconductor Laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

2009 (2)

2008 (1)

2007 (2)

2006 (2)

2004 (1)

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

2003 (1)

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection Locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

2000 (1)

1999 (1)

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
[Crossref]

Adams, M. J.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

AlMulla, M.

T. B. Simpson, J.-M. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Amann, M. C.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chan, S. C.

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

Chan, S.-C.

Chang, C. H.

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection Locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Chang-Hasnain, C. J.

Chen, J.

Chrostowski, L.

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection Locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Clark, T. R.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

Consoli, A.

P. Perez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection,” IEEE Photonics J. 7(1), 5500614 (2015).
[Crossref]

Cui, C.

Dagli, N.

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
[Crossref]

Dennis, M. L.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

Esquivias, I.

P. Perez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection,” IEEE Photonics J. 7(1), 5500614 (2015).
[Crossref]

Fan, L.

L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express 24(16), 18252–18265 (2016).
[Crossref] [PubMed]

Y. Zhou, Z.-M. Wu, L. Fan, B. Sun, Y. He, and G.-Q. Xia, “Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection,” Wuli Xuebao 64(20), 204203 (2015).

Fu, X.

Gamage, P. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

Grillot, F.

He, Y.

Y. Zhou, Z.-M. Wu, L. Fan, B. Sun, Y. He, and G.-Q. Xia, “Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection,” Wuli Xuebao 64(20), 204203 (2015).

Henning, I. D.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Hofmann, W.

Hurtado, A.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Hwang, S.-K.

Juan, Y.-S.

Y.-S. Juan and F.-Y. Lin, “Photonic Generation of Broadly Tunable Microwave Signals Utilizing a Dual-Beam Optically Injected Semiconductor Laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Kovanis, V.

T. B. Simpson, J.-M. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Koyama, F.

Lester, L. F.

C. Wang, R. Raghunathan, K. Schires, S.-C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Liang, Q.

Lim, C.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18(10), 1355–1363 (2000).
[Crossref]

Lin, F.-Y.

Y.-S. Juan and F.-Y. Lin, “Photonic Generation of Broadly Tunable Microwave Signals Utilizing a Dual-Beam Optically Injected Semiconductor Laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Lin, H.

Liu, J. M.

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

Liu, J.-M.

Liu, J.-M. M.

T. B. Simpson, J.-M. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

Nanzer, J. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

Nirmalathas, A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18(10), 1355–1363 (2000).
[Crossref]

Noriega, I.

P. Perez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection,” IEEE Photonics J. 7(1), 5500614 (2015).
[Crossref]

Novak, D.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18(10), 1355–1363 (2000).
[Crossref]

Parekh, D.

Perez, P.

P. Perez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection,” IEEE Photonics J. 7(1), 5500614 (2015).
[Crossref]

Pesquera, L.

P. Perez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection,” IEEE Photonics J. 7(1), 5500614 (2015).
[Crossref]

Pierce, D. W.

Qi, X.-Q.

X.-Q. Qi and J.-M. Liu, “Photonic Microwave Applications of the Dynamics of Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

Quirce, A.

Raghunathan, R.

Schires, K.

Simpson, T. B.

T. B. Simpson, J.-M. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Sun, B.

B. Sun, J.-G. Wu, S.-T. Wang, Z.-M. Wu, and G.-Q. Xia, “Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser,” Wuli Xuebao 65(1), 014207 (2016).

Y. Zhou, Z.-M. Wu, L. Fan, B. Sun, Y. He, and G.-Q. Xia, “Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection,” Wuli Xuebao 64(20), 204203 (2015).

Tang, X.

Usechak, N. G.

T. B. Simpson, J.-M. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Valle, A.

Wang, C.

Wang, S.-T.

B. Sun, J.-G. Wu, S.-T. Wang, Z.-M. Wu, and G.-Q. Xia, “Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser,” Wuli Xuebao 65(1), 014207 (2016).

Waterhouse, R.

Waterhouse, R. B.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

Wu, J.-G.

B. Sun, J.-G. Wu, S.-T. Wang, Z.-M. Wu, and G.-Q. Xia, “Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser,” Wuli Xuebao 65(1), 014207 (2016).

Wu, Z.

Wu, Z.-M.

B. Sun, J.-G. Wu, S.-T. Wang, Z.-M. Wu, and G.-Q. Xia, “Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser,” Wuli Xuebao 65(1), 014207 (2016).

Y. Zhou, Z.-M. Wu, L. Fan, B. Sun, Y. He, and G.-Q. Xia, “Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection,” Wuli Xuebao 64(20), 204203 (2015).

Xia, G.

Xia, G.-Q.

B. Sun, J.-G. Wu, S.-T. Wang, Z.-M. Wu, and G.-Q. Xia, “Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser,” Wuli Xuebao 65(1), 014207 (2016).

Y. Zhou, Z.-M. Wu, L. Fan, B. Sun, Y. He, and G.-Q. Xia, “Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection,” Wuli Xuebao 64(20), 204203 (2015).

Yao, J.

Yoffe, G.

Zenteno, L. A.

Zhang, Y.

Zhao, X.

Zhou, Y.

Y. Zhou, Z.-M. Wu, L. Fan, B. Sun, Y. He, and G.-Q. Xia, “Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection,” Wuli Xuebao 64(20), 204203 (2015).

Zhuang, J.-P.

IEEE J. Quantum Electron. (1)

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron. 52(1), 0600311 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

X.-Q. Qi and J.-M. Liu, “Photonic Microwave Applications of the Dynamics of Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection Locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

IEEE Photonics J. (3)

P. Perez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection,” IEEE Photonics J. 7(1), 5500614 (2015).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Y.-S. Juan and F.-Y. Lin, “Photonic Generation of Broadly Tunable Microwave Signals Utilizing a Dual-Beam Optically Injected Semiconductor Laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

T. B. Simpson, J.-M. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

Wuli Xuebao (2)

Y. Zhou, Z.-M. Wu, L. Fan, B. Sun, Y. He, and G.-Q. Xia, “Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection,” Wuli Xuebao 64(20), 204203 (2015).

B. Sun, J.-G. Wu, S.-T. Wang, Z.-M. Wu, and G.-Q. Xia, “Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser,” Wuli Xuebao 65(1), 014207 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental setup. ML: Master laser, SL: Slave laser, PC: polarization controller, Atten: digital attenuator Cir: Optical circulator. ISO: optical isolator, 3dB: 2 by 2 3dB fiber coupler, Dec: photodetector, RF: radio frequency spectrum analyzer. FPI: Fabry-Perot interferometer.
Fig. 2
Fig. 2 The power spectra of the VCSEL output at injections frequency detuning and injection power of (a) (−2.9 GHz, 0.37mW), (b) (−29. GHz, 0.74 mW), (c) (4.1 GHz, 0.28 mW), (d) (8.17 GHz, 0.28 mW).
Fig. 3
Fig. 3 Generated microwave frequency as function of (a) frequency detuning and (b) injection power.
Fig. 4
Fig. 4 Mapping of the fundamental frequency.
Fig. 5
Fig. 5 Mapping of the fundamental microwave frequency power.
Fig. 6
Fig. 6 Second harmonic distortion as a function of (a) the frequency detuning, (b) the injection power.

Metrics