Abstract

A temperature sensor employing the Vernier effect generated from a cascaded fiber rings based microwave photonic filter (MPF) is proposed and experimentally demonstrated. The structure of the fiber ring is used as a sensing element as well as the sampling and delaying component of the MPF in our proposed sensing scheme. The sensing characteristics of both single ring and cascaded fiber rings based sensors have been studied and compared. By employing two cascaded fiber rings of slightly different length, the Vernier effect can be generated in the frequency response of the MPF. The sensing interrogation of the cascaded fiber rings based sensor is conducted by detecting the frequency shift of the upper envelope of the measured frequency response curve. The experimental results show that the sensitivity of the cascaded fiber rings based sensor can be improved about 30 times compared with the single fiber ring based temperature sensor.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique

Yiping Wang, Ming Wang, Wei Xia, and Xiaoqi Ni
Opt. Express 24(16) 17960-17967 (2016)

Sensitivity amplification of fiber-optic in-line Mach–Zehnder Interferometer sensors with modified Vernier-effect

Hao Liao, Ping Lu, Xin Fu, Xinyue Jiang, Wenjun Ni, Deming Liu, and Jiangshan Zhang
Opt. Express 25(22) 26898-26909 (2017)

Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter

Yiping Wang, Xiaoqi Ni, Ming Wang, Yifeng Cui, and Qingyun Shi
Opt. Express 25(2) 644-653 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Santos, and F. Farahi, Handbook of optical Sensors (CSC 2015).
  2. A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
    [Crossref]
  3. J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
    [Crossref]
  4. H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
    [Crossref]
  5. A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
    [Crossref] [PubMed]
  6. J. Hervas, C. R. Fernandez-Pousa, D. Barrera, D. Pastor, S. Sales, and J. Capmany, “An Interrogation Technique of FBG Cascade Sensors Using Wavelength to Radio-Frequency Delay Mapping,” J. Lightwave Technol. 33(11), 2222–2227 (2015).
    [Crossref]
  7. Y. Wang, M. Wang, W. Xia, and X. Ni, “High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique,” Opt. Express 24(16), 17960–17967 (2016).
    [Crossref] [PubMed]
  8. J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
    [Crossref] [PubMed]
  9. Y. Wang, X. Ni, M. Wang, Y. Cui, and Q. Shi, “Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter,” Opt. Express 25(2), 644–653 (2017).
    [Crossref] [PubMed]
  10. H. Chen, S. Zhang, H. Fu, B. Zhou, and N. Chen, “Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter,” Opt. Express 24(3), 2765–2773 (2016).
    [Crossref] [PubMed]
  11. J. C. Bellido and C. R. Fernandez-Pousa, “Spectral Analysis Using a Dispersive Microwave Photonics Link Based on a Broadband Chirped Fiber Bragg Grating,” J. Lightwave Technol. 33(20), 4207–4214 (2015).
    [Crossref]
  12. J. Benítez, M. Bolea, and J. Mora, “Demonstration of multiplexed sensor system combining low coherence interferometry and microwave photonics,” Opt. Express 25(11), 12182–12187 (2017).
    [Crossref] [PubMed]
  13. T. Wei, J. Huang, X. Lan, Q. Han, and H. Xiao, “Optical fiber sensor based on a radio frequency Mach-Zehnder interferometer,” Opt. Lett. 37(4), 647–649 (2012).
    [Crossref] [PubMed]
  14. J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express 21(15), 18152–18159 (2013).
    [Crossref] [PubMed]
  15. J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry,” Opt. Express 22(15), 18757–18769 (2014).
    [Crossref] [PubMed]
  16. L. Hua, Y. Song, J. Huang, X. Lan, Y. Li, and H. Xiao, “Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing,” Appl. Opt. 54(24), 7181–7187 (2015).
    [Crossref] [PubMed]
  17. J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave Interrogated Sapphire Fiber Michelson Interferometer for High Temperature Sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
    [Crossref]
  18. M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors,” Sensors (Basel) 14(3), 4831–4855 (2014).
    [Crossref] [PubMed]
  19. D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
    [Crossref] [PubMed]
  20. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref] [PubMed]
  21. M. L. Notte and V. M. N. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach–Zehnder interferometer enhanced Vernier-effect,” Sens. Actuators B Chem. 176(1), 994–1007 (2012).
  22. X. Jiang, J. Ye, J. Zou, M. Li, and J.-J. He, “Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode,” Opt. Lett. 38(8), 1349–1351 (2013).
    [Crossref] [PubMed]
  23. X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J.-J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39(22), 6363–6366 (2014).
    [Crossref] [PubMed]
  24. H. T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
    [Crossref] [PubMed]
  25. J. W. Hoste, P. Soetaert, and P. Bienstman, “Improving the detection limit of conformational analysis by utilizing a dual polarization Vernier cascade,” Opt. Express 24(1), 67–81 (2016).
    [Crossref] [PubMed]
  26. L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
    [Crossref]
  27. Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
    [Crossref] [PubMed]
  28. P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
    [Crossref] [PubMed]
  29. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [Crossref] [PubMed]
  30. Y. Zhao, P. Wang, R. Lv, and X. Liu, “Highly Sensitive Airflow Sensor Based on Fabry–Perot Interferometer and Vernier Effect,” J. Lightwave Technol. 34(23), 5351–5356 (2016).
    [Crossref]
  31. B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol. 10(8), 1142–1147 (1992).
    [Crossref]

2017 (3)

2016 (7)

2015 (7)

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave Interrogated Sapphire Fiber Michelson Interferometer for High Temperature Sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[Crossref] [PubMed]

J. Hervas, C. R. Fernandez-Pousa, D. Barrera, D. Pastor, S. Sales, and J. Capmany, “An Interrogation Technique of FBG Cascade Sensors Using Wavelength to Radio-Frequency Delay Mapping,” J. Lightwave Technol. 33(11), 2222–2227 (2015).
[Crossref]

L. Hua, Y. Song, J. Huang, X. Lan, Y. Li, and H. Xiao, “Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing,” Appl. Opt. 54(24), 7181–7187 (2015).
[Crossref] [PubMed]

J. C. Bellido and C. R. Fernandez-Pousa, “Spectral Analysis Using a Dispersive Microwave Photonics Link Based on a Broadband Chirped Fiber Bragg Grating,” J. Lightwave Technol. 33(20), 4207–4214 (2015).
[Crossref]

M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (3)

2012 (2)

T. Wei, J. Huang, X. Lan, Q. Han, and H. Xiao, “Optical fiber sensor based on a radio frequency Mach-Zehnder interferometer,” Opt. Lett. 37(4), 647–649 (2012).
[Crossref] [PubMed]

M. L. Notte and V. M. N. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach–Zehnder interferometer enhanced Vernier-effect,” Sens. Actuators B Chem. 176(1), 994–1007 (2012).

2010 (1)

2009 (2)

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
[Crossref] [PubMed]

1992 (1)

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol. 10(8), 1142–1147 (1992).
[Crossref]

Barrera, D.

Bellido, J. C.

Benítez, J.

Bennion, I.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Bienstman, P.

Bogaerts, W.

Bolea, M.

Campanella, C. E.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors,” Sensors (Basel) 14(3), 4831–4855 (2014).
[Crossref] [PubMed]

Capmany, J.

Chen, H.

Chen, N.

Chen, Y.

Cheng, R.

Claes, T.

Cui, Y.

Dai, D.

De Leonardis, F.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors,” Sensors (Basel) 14(3), 4831–4855 (2014).
[Crossref] [PubMed]

Fernandez-Pousa, C. R.

Fu, H.

H. Chen, S. Zhang, H. Fu, B. Zhou, and N. Chen, “Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter,” Opt. Express 24(3), 2765–2773 (2016).
[Crossref] [PubMed]

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Fu, S.

Gao, F.

Goodman, J. W.

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol. 10(8), 1142–1147 (1992).
[Crossref]

Han, Q.

He, J.-J.

He, S.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Hervas, J.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

J. Hervas, C. R. Fernandez-Pousa, D. Barrera, D. Pastor, S. Sales, and J. Capmany, “An Interrogation Technique of FBG Cascade Sensors Using Wavelength to Radio-Frequency Delay Mapping,” J. Lightwave Technol. 33(11), 2222–2227 (2015).
[Crossref]

Hervás, J.

A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
[Crossref]

Hoste, J. W.

Hua, L.

Huang, J.

Jiang, X.

Kim, H. T.

La Notte, M.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors,” Sensors (Basel) 14(3), 4831–4855 (2014).
[Crossref] [PubMed]

Lan, X.

Li, B.

Li, M.

Li, W.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Li, Y.

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave Interrogated Sapphire Fiber Michelson Interferometer for High Temperature Sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

L. Hua, Y. Song, J. Huang, X. Lan, Y. Li, and H. Xiao, “Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing,” Appl. Opt. 54(24), 7181–7187 (2015).
[Crossref] [PubMed]

Liu, D.

Liu, X.

Lu, W.

Luo, B.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Luo, M.

Luo, Y.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[Crossref] [PubMed]

Lv, R.

Mora, J.

Moslehi, B.

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol. 10(8), 1142–1147 (1992).
[Crossref]

Mou, C.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Muciaccia, T.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors,” Sensors (Basel) 14(3), 4831–4855 (2014).
[Crossref] [PubMed]

Ni, X.

Notte, M. L.

M. L. Notte and V. M. N. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach–Zehnder interferometer enhanced Vernier-effect,” Sens. Actuators B Chem. 176(1), 994–1007 (2012).

Ouyang, J.

Pan, W.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Passaro, V. M.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors,” Sensors (Basel) 14(3), 4831–4855 (2014).
[Crossref] [PubMed]

Passaro, V. M. N.

M. L. Notte and V. M. N. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach–Zehnder interferometer enhanced Vernier-effect,” Sens. Actuators B Chem. 176(1), 994–1007 (2012).

Pastor, D.

Quan, M.

Ricchiuti, A. L.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
[Crossref]

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
[Crossref] [PubMed]

Rohollahnejad, J.

Sales, S.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
[Crossref]

J. Hervas, C. R. Fernandez-Pousa, D. Barrera, D. Pastor, S. Sales, and J. Capmany, “An Interrogation Technique of FBG Cascade Sensors Using Wavelength to Radio-Frequency Delay Mapping,” J. Lightwave Technol. 33(11), 2222–2227 (2015).
[Crossref]

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
[Crossref] [PubMed]

Shao, L. Y.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Shi, Q.

Shu, X.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Shum, P. P.

Soetaert, P.

Song, Y.

L. Hua, Y. Song, J. Huang, X. Lan, Y. Li, and H. Xiao, “Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing,” Appl. Opt. 54(24), 7181–7187 (2015).
[Crossref] [PubMed]

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave Interrogated Sapphire Fiber Michelson Interferometer for High Temperature Sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

Sun, Q.

Tang, L.

Tang, M.

Thevenaz, L.

Tian, J.

Troia, B.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors,” Sensors (Basel) 14(3), 4831–4855 (2014).
[Crossref] [PubMed]

Wang, M.

Wang, P.

Wang, Y.

Wei, T.

Wen, Y.

Xia, L.

Xia, W.

Xiao, H.

Xu, Z.

Yan, L.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Yao, Y.

Ye, J.

Yu, F.

Yu, M.

Zhang, L.

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[Crossref] [PubMed]

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Zhang, P.

Zhang, S.

Zhang, W.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Zhang, Z.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Zhao, Y.

Zhou, B.

Zhou, J.

Zhu, B.

Zhu, N. H.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Zou, J.

Zou, X.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering,” IEEE Photonics Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave Interrogated Sapphire Fiber Michelson Interferometer for High Temperature Sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

J. Lightwave Technol. (4)

Opt. Commun. (1)

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Opt. Express (13)

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[Crossref] [PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref] [PubMed]

H. T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
[Crossref] [PubMed]

J. W. Hoste, P. Soetaert, and P. Bienstman, “Improving the detection limit of conformational analysis by utilizing a dual polarization Vernier cascade,” Opt. Express 24(1), 67–81 (2016).
[Crossref] [PubMed]

Y. Wang, M. Wang, W. Xia, and X. Ni, “High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique,” Opt. Express 24(16), 17960–17967 (2016).
[Crossref] [PubMed]

Y. Wang, X. Ni, M. Wang, Y. Cui, and Q. Shi, “Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter,” Opt. Express 25(2), 644–653 (2017).
[Crossref] [PubMed]

H. Chen, S. Zhang, H. Fu, B. Zhou, and N. Chen, “Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter,” Opt. Express 24(3), 2765–2773 (2016).
[Crossref] [PubMed]

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
[Crossref] [PubMed]

J. Benítez, M. Bolea, and J. Mora, “Demonstration of multiplexed sensor system combining low coherence interferometry and microwave photonics,” Opt. Express 25(11), 12182–12187 (2017).
[Crossref] [PubMed]

J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express 21(15), 18152–18159 (2013).
[Crossref] [PubMed]

J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry,” Opt. Express 22(15), 18757–18769 (2014).
[Crossref] [PubMed]

D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
[Crossref] [PubMed]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
[Crossref]

Opt. Lett. (5)

Sens. Actuators B Chem. (1)

M. L. Notte and V. M. N. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach–Zehnder interferometer enhanced Vernier-effect,” Sens. Actuators B Chem. 176(1), 994–1007 (2012).

Sensors (Basel) (1)

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors,” Sensors (Basel) 14(3), 4831–4855 (2014).
[Crossref] [PubMed]

Other (1)

J. L. Santos, and F. Farahi, Handbook of optical Sensors (CSC 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Setup of the single FR-MPF based sensor.
Fig. 2
Fig. 2 Calculated MPF frequency response with (a) different coupler ratios ( k various from 0.1 to 0.9) (b) different fiber lengths ( L various from 0.4m to 0.44m).
Fig. 3
Fig. 3 Measured frequency response of the FR-MPF in different frequency range when the sensor fiber under different temperature (a: 1 GHz; b: 1.5 GHz; c: 2.5 GHz).
Fig. 4
Fig. 4 Frequency shift of the reference notch points under different temperature in different frequency ranges.
Fig. 5
Fig. 5 Schematic diagram of the cascaded fiber ring based sensor.
Fig. 6
Fig. 6 Frequency response of the system with (a) just the sensing fiber ring, (b) just the reference ring, (c) two cascaded fiber rings (red line: upper envelope of the frequency response curve).
Fig. 7
Fig. 7 Measured frequency response of the cascaded fiber ring sensor in different frequency ranges when the sensing fiber is at different temperatures ((a) 1GHz, (b) 1.5GHz, (c) 2.5G; blue: measured frequency curve, red: upper envelope of the curve).
Fig. 8
Fig. 8 Frequency shifts of the reference notch points of the upper envelope under different temperatures and their fitted results.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H = 1 k + ( 2 k 1 ) e j φ 1 ( 1 k ) e j φ , φ = 2 π n f L c
F S R = c / n L
f n = ( 0.5 + i ) F S R = ( 0.5 + i ) c n L , i = 0 , 1 , 2
Δ f n = ( 0.5 + i ) Δ F S R = ( 0.5 + i ) * ( c n L + l ( ξ Δ T + α Δ T ) c n L ) - f n * l L * ( ξ + α ) n Δ T
F S R c a s = F S R s e n × F S R r e f | F S R s e n F S R r e f |

Metrics