Abstract

An optical signal suppression technique based on a cascaded SOA and RSOA is proposed for the reflective passive optical networks (PONs) with wavelength division multiplexing (WDM). By suppressing the downstream signal of the optical carrier, the proposed reflective PON effectively reuses the downstream optical carrier for upstream signal transmission. As an experimental demonstration, we show that the proposed optical signal suppression technique is effective in terms of the signal bandwidth and bit-error-rate (BER) performance of the remodulated upstream transmission.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang
Opt. Express 18(10) 9791-9808 (2010)

Transmission of 40-Gb/s QPSK upstream signal in RSOA-based coherent WDM PON using offset PDM technique

H. K. Shim, K. Y. Cho, U. H. Hong, and Y. C. Chung
Opt. Express 21(3) 3721-3725 (2013)

Cost-effective TCM-based WDM-PON for highly asymmetric traffic conditions

Danbi Lee, Won-Bae Kwon, Chang-Joon Chae, and Chang-Soo Park
Opt. Express 23(23) 29802-29807 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. L. Kazovsky, W.-T. Shaw, D. Gutierrez, N. cheng, and S.-W. Wong, “Next-Generation Optical Access Networks,” J. Lightwave Technol. 25, 3428–3442 (2007).
  2. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [Crossref]
  3. F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
    [Crossref]
  4. E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
    [Crossref]
  5. W. Zhan, T. Tanemura, S. Yamauchi, M. Mukaikubo, and Y. Nakano, “Uncooled (25–50 °C) operation of self-seeded RSOA for low-cost colorless WDM-PON transmitter,” ECOC, We1.5.5., Valencia, Spain (2015).
  6. R. P. Giddings, E. Hugues-Salas, H. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photonics Technol. Lett. 22(11), 745–747 (2010).
    [Crossref]
  7. S. Straullu, F. Forghieri, G. Bosco, V. Ferrero, and R. Gaudino, “Coherent Reflective PON architecture: can it be made compatible with TWDM-PON?” ECOC, We.3.F.1, London, UK (2013).
  8. H. Feng, J. Ge, S. Xiao, and M. P. Fok, “Suppression of Rayleigh backscattering noise using cascaded-SOA and microwave photonic filter for 10 Gb/s loop-back WDM-PON,” Opt. Express 22(10), 11770–11777 (2014).
    [Crossref] [PubMed]
  9. H. Shim, H. Kim, and Y. C. Chung, “28-Gb/s Upstream Transmission in RSOA-based WDM PON Using Polar RZ PAM-N Format and Direct Detection,” in Proc. Optical Fiber Communication Conference (OFC, 2016), paper Tu2C.3.
    [Crossref]
  10. J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
    [Crossref] [PubMed]
  11. H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol. 21(11), 2546–2556 (2003).
    [Crossref]
  12. E. Conforti, C. M. Gallep, S. Ho, A. C. Bordonalli, and S. M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifier,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
    [Crossref]
  13. H. Takesue, N. Yoshimoto, Y. Shibata, T. Ito, Y. Tohmori, and T. Sugie, “Wavelength channel data rewrite using semiconductor optical saturator/modulator,” J. Lightwave Technol. 24(6), 2347–2354 (2006).
    [Crossref]
  14. S. Ó. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
    [Crossref] [PubMed]
  15. R. Ramaswami and P. A. Humblet, “Amplifier induced crosstalk in multichannel optical networks,” J. Lightwave Technol. 8(12), 1882–1896 (1990).
    [Crossref]
  16. R. Boula-Picard, M. Alouini, J. Lopez, N. Vodjdani, and J.-C. Simon, “Impact of the gain saturation dynamics in semiconductor optical amplifiers on the characteristics of an analog optical link,” J. Lightwave Technol. 23(8), 2420–2426 (2005).
    [Crossref]

2015 (1)

F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
[Crossref]

2014 (1)

2012 (2)

2010 (2)

R. P. Giddings, E. Hugues-Salas, H. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photonics Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
[Crossref] [PubMed]

2007 (2)

2006 (1)

2005 (1)

2003 (1)

2002 (1)

E. Conforti, C. M. Gallep, S. Ho, A. C. Bordonalli, and S. M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifier,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[Crossref]

1990 (1)

R. Ramaswami and P. A. Humblet, “Amplifier induced crosstalk in multichannel optical networks,” J. Lightwave Technol. 8(12), 1882–1896 (1990).
[Crossref]

Alouini, M.

Anderson, T. B.

Bordonalli, A. C.

E. Conforti, C. M. Gallep, S. Ho, A. C. Bordonalli, and S. M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifier,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[Crossref]

Boula-Picard, R.

Brenot, R.

Chanclou, P.

F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
[Crossref]

cheng, N.

Conforti, E.

E. Conforti, C. M. Gallep, S. Ho, A. C. Bordonalli, and S. M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifier,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[Crossref]

Cvijetic, N.

Dúill, S. Ó.

Feng, H.

Fok, M. P.

Freude, W.

Gallep, C. M.

E. Conforti, C. M. Gallep, S. Ho, A. C. Bordonalli, and S. M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifier,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[Crossref]

Ge, J.

Giddings, R. P.

R. P. Giddings, E. Hugues-Salas, H. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photonics Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
[Crossref] [PubMed]

Gutierrez, D.

Ho, S.

E. Conforti, C. M. Gallep, S. Ho, A. C. Bordonalli, and S. M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifier,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[Crossref]

Hugues-Salas, E.

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, H. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photonics Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

Humblet, P. A.

R. Ramaswami and P. A. Humblet, “Amplifier induced crosstalk in multichannel optical networks,” J. Lightwave Technol. 8(12), 1882–1896 (1990).
[Crossref]

Ito, T.

Jin, H. Q.

R. P. Giddings, E. Hugues-Salas, H. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photonics Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

Jin, X. Q.

Kang, S. M.

E. Conforti, C. M. Gallep, S. Ho, A. C. Bordonalli, and S. M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifier,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[Crossref]

Kazovsky, G. L.

Koos, C.

Lee, K. L.

Leuthold, J.

Lin, H.

F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
[Crossref]

Lopez, J.

Mansoor, S.

Marazzi, L.

Parolari, P.

Pizzinat, A.

F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
[Crossref]

Ramaswami, R.

R. Ramaswami and P. A. Humblet, “Amplifier induced crosstalk in multichannel optical networks,” J. Lightwave Technol. 8(12), 1882–1896 (1990).
[Crossref]

Saliou, F.

F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
[Crossref]

Shaw, W.-T.

Shibata, Y.

Simon, G.

F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
[Crossref]

Simon, J.-C.

Sugie, T.

Takesue, H.

Tang, J. M.

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, H. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photonics Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

Tohmori, Y.

Vodjdani, N.

Wei, J. L.

R. P. Giddings, E. Hugues-Salas, H. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photonics Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
[Crossref] [PubMed]

Wong, E.

Wong, S.-W.

Xiao, S.

Xu, Z.

F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
[Crossref]

Yoshimoto, N.

Zheng, X.

Zhou, E.

F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. P. Giddings, E. Hugues-Salas, H. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photonics Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Conforti, C. M. Gallep, S. Ho, A. C. Bordonalli, and S. M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifier,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[Crossref]

J. Lightwave Technol. (7)

Opt. Express (3)

Opt. Fiber Technol. (1)

F. Saliou, G. Simon, P. Chanclou, A. Pizzinat, H. Lin, E. Zhou, and Z. Xu, “WDM PONs based on colorless technology,” Opt. Fiber Technol. 26, 126–134 (2015).
[Crossref]

Other (3)

W. Zhan, T. Tanemura, S. Yamauchi, M. Mukaikubo, and Y. Nakano, “Uncooled (25–50 °C) operation of self-seeded RSOA for low-cost colorless WDM-PON transmitter,” ECOC, We1.5.5., Valencia, Spain (2015).

S. Straullu, F. Forghieri, G. Bosco, V. Ferrero, and R. Gaudino, “Coherent Reflective PON architecture: can it be made compatible with TWDM-PON?” ECOC, We.3.F.1, London, UK (2013).

H. Shim, H. Kim, and Y. C. Chung, “28-Gb/s Upstream Transmission in RSOA-based WDM PON Using Polar RZ PAM-N Format and Direct Detection,” in Proc. Optical Fiber Communication Conference (OFC, 2016), paper Tu2C.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Proposed signal suppression technique based on the cascaded SOA/RSOA.
Fig. 2
Fig. 2 Experimental setup
Fig. 3
Fig. 3 Modulation depth of input and output signal for various modulated signal bandwidths with respect to SOA input power of (a) + 5 dBm, (b) −5 dBm, (c) −10 dBm, (d) −20 dBm, and (e) −30dBm.
Fig. 4
Fig. 4 BER performance of the remodulated upstream signal versus received optical power with respect to the modulation depth of the downstream signal; (a) 0.9 and (b) 0.5. The used signal bandwidth for both the upstream and downstream signals was 4 GHz with the DMT modulation.
Fig. 5
Fig. 5 BER performance of the bidirectional transmission versus ODN loss with respect to the modulation depth of the downstream signal; (a) 0.5 and (b) 0.9. The used signal bandwidth for both the upstream and downstream signals was 4 GHz with the DMT modulation.
Fig. 6
Fig. 6 EVM performance of the remodulated upstream signal for each individual subcarrier in the DMT frame. The modulation depth was 0.5 for the downstream signal, and the received optical power was - 6 dBm.

Metrics