Abstract

We report magnetic field tuning of the structure and Whispering Gallery Mode lasing from ferromagnetic nematic liquid crystal micro-droplets. Microlasers were prepared by dispersing a nematic liquid crystal, containing magnetic nanoparticles and fluorescent dye, in a glycerol-lecithin matrix. The droplets exhibit radial director structure, which shows elastic distortion at a very low external magnetic field. The fluorescent dye doped ferromagnetic nematic droplets show Whispering Gallery Mode lasing, which is tunable by the external magnetic field. The tuning of the WGM lasing modes is linear in magnetic field with a wavelength-shift of the order of 1 nm/100 mT. Depending on the lasing geometry, the WGMs are red- or blue-shifted.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets

M. Humar and I. Muševič
Opt. Express 19(21) 19836-19844 (2011)

Magnetically controllable random laser in ferromagnetic nematic liquid crystals

Takuya Naruta, Takuya Akita, Yoshiaki Uchida, Darja Lisjak, Alenka Mertelj, and Norikazu Nishiyama
Opt. Express 27(17) 24426-24433 (2019)

Measuring nematic liquid crystal anchoring energy using whispering gallery modes

Keon-Joo Lee, Sung-Jo Kim, Daeseung Kang, and Jong-Hyun Kim
Opt. Express 23(19) 24903-24909 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1993).
  2. H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
    [Crossref]
  3. I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313, 954–958 (2006).
    [Crossref]
  4. A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun. 4, 1489 (2013).
    [Crossref] [PubMed]
  5. I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95, 157801 (2005).
    [Crossref] [PubMed]
  6. K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
    [Crossref]
  7. K. P. Zuhail and S. Dhara, “Temperature dependence of equilibrium separation and lattice parameters of nematic boojum-colloids,” Appl. Phys. Lett. 106, 211901 (2015).
    [Crossref]
  8. I. Muševič, “Liquid-crystal micro-photonics,” Liquid Crystal Reviews 4, 1–34 (2016).
    [Crossref]
  9. A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504, 237–241 (2013).
    [Crossref] [PubMed]
  10. A. Mertelj, N. Osterman, D. Lisjak, and M. Čopič, “Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal,” Soft Matter 10, 9065–9072 (2014).
    [Crossref] [PubMed]
  11. R. Sahoo, M. V. Rasna, D. Lisjak, A. Mertelj, and S. Dhara, “Magnetodielectric and magnetoviscosity response of a ferromagnetic liquid crystal at low magnetic fields,” Appl. Phys. Lett. 106, 161905 (2015).
    [Crossref]
  12. Q. Zhang, P. J. Ackerman, Q. Liu, and I. I. Smalyukh, “Ferromagnetic switching of knotted vector fields in liquid crystal colloids,” Phys. Rev. Lett. 115, 097802 (2015).
    [Crossref] [PubMed]
  13. Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” PNAS 113(38), 10479–10484 (2016).
    [Crossref] [PubMed]
  14. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
    [Crossref]
  15. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
    [Crossref]
  16. D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
    [Crossref] [PubMed]
  17. J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21, 15765–15776 (2013).
    [Crossref] [PubMed]
  18. Z. Zheng, B. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
    [Crossref]
  19. M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Opt. Express 21, 19836–19844 (2011).
    [Crossref]
  20. M. Humar and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 19836–19844 (2011).
    [Crossref]
  21. T. A. Kumar, M. A. Mohiddon, N. Dutta, N. K. Viswanathan, and S. Dhara, “Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets,” Appl. Phys. Lett. 106, 051101 (2015).
    [Crossref]
  22. A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, “Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid,” Opt. Lett. 40(21), 4983–4986 (2015).
    [Crossref] [PubMed]
  23. D. Lisjak and M. Drofenik, “Chemical substitution - an alternative strategy for controlling the particle size of barium ferrite,” Cryst. Growth Des. 12(11), 5174–5179 (2012).
    [Crossref]
  24. W.-Y. Li and S.-H. Chen, “Simulation of normal anchoring nematic droplets under electrical fields,” Jpn. J. Appl. Phys. 38, 1482–1487 (1999).
    [Crossref]
  25. J. H. Erdmann, S. Žumer, and J. W. Doane, “Configuration transition in a nematic liquid crystal confined to a small spherical cavity,” Phys. Rev. Lett. 64(16), 1907–1910 (1990).
    [Crossref] [PubMed]
  26. V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Zh. Eksp. Teor. Fiz. 101, 111–125 (1992).

2016 (2)

I. Muševič, “Liquid-crystal micro-photonics,” Liquid Crystal Reviews 4, 1–34 (2016).
[Crossref]

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” PNAS 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

2015 (7)

R. Sahoo, M. V. Rasna, D. Lisjak, A. Mertelj, and S. Dhara, “Magnetodielectric and magnetoviscosity response of a ferromagnetic liquid crystal at low magnetic fields,” Appl. Phys. Lett. 106, 161905 (2015).
[Crossref]

Q. Zhang, P. J. Ackerman, Q. Liu, and I. I. Smalyukh, “Ferromagnetic switching of knotted vector fields in liquid crystal colloids,” Phys. Rev. Lett. 115, 097802 (2015).
[Crossref] [PubMed]

T. A. Kumar, M. A. Mohiddon, N. Dutta, N. K. Viswanathan, and S. Dhara, “Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets,” Appl. Phys. Lett. 106, 051101 (2015).
[Crossref]

K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
[Crossref]

K. P. Zuhail and S. Dhara, “Temperature dependence of equilibrium separation and lattice parameters of nematic boojum-colloids,” Appl. Phys. Lett. 106, 211901 (2015).
[Crossref]

Z. Zheng, B. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, “Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid,” Opt. Lett. 40(21), 4983–4986 (2015).
[Crossref] [PubMed]

2014 (1)

A. Mertelj, N. Osterman, D. Lisjak, and M. Čopič, “Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal,” Soft Matter 10, 9065–9072 (2014).
[Crossref] [PubMed]

2013 (3)

J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21, 15765–15776 (2013).
[Crossref] [PubMed]

A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504, 237–241 (2013).
[Crossref] [PubMed]

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun. 4, 1489 (2013).
[Crossref] [PubMed]

2012 (1)

D. Lisjak and M. Drofenik, “Chemical substitution - an alternative strategy for controlling the particle size of barium ferrite,” Cryst. Growth Des. 12(11), 5174–5179 (2012).
[Crossref]

2011 (3)

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
[Crossref] [PubMed]

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Opt. Express 21, 19836–19844 (2011).
[Crossref]

M. Humar and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 19836–19844 (2011).
[Crossref]

2010 (1)

2009 (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

2006 (1)

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313, 954–958 (2006).
[Crossref]

2005 (1)

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95, 157801 (2005).
[Crossref] [PubMed]

2001 (1)

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
[Crossref]

1999 (1)

W.-Y. Li and S.-H. Chen, “Simulation of normal anchoring nematic droplets under electrical fields,” Jpn. J. Appl. Phys. 38, 1482–1487 (1999).
[Crossref]

1992 (1)

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Zh. Eksp. Teor. Fiz. 101, 111–125 (1992).

1990 (1)

J. H. Erdmann, S. Žumer, and J. W. Doane, “Configuration transition in a nematic liquid crystal confined to a small spherical cavity,” Phys. Rev. Lett. 64(16), 1907–1910 (1990).
[Crossref] [PubMed]

Ackerman, P. J.

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” PNAS 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Q. Zhang, P. J. Ackerman, Q. Liu, and I. I. Smalyukh, “Ferromagnetic switching of knotted vector fields in liquid crystal colloids,” Phys. Rev. Lett. 115, 097802 (2015).
[Crossref] [PubMed]

Ahmed, S. S.

Bondar, V. G.

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Zh. Eksp. Teor. Fiz. 101, 111–125 (1992).

Chen, S.-H.

W.-Y. Li and S.-H. Chen, “Simulation of normal anchoring nematic droplets under electrical fields,” Jpn. J. Appl. Phys. 38, 1482–1487 (1999).
[Crossref]

Coles, H. J.

Copar, S.

K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
[Crossref]

Copic, M.

A. Mertelj, N. Osterman, D. Lisjak, and M. Čopič, “Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal,” Soft Matter 10, 9065–9072 (2014).
[Crossref] [PubMed]

A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504, 237–241 (2013).
[Crossref] [PubMed]

De Gennes, P. G.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1993).

Dhara, S.

K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
[Crossref]

K. P. Zuhail and S. Dhara, “Temperature dependence of equilibrium separation and lattice parameters of nematic boojum-colloids,” Appl. Phys. Lett. 106, 211901 (2015).
[Crossref]

R. Sahoo, M. V. Rasna, D. Lisjak, A. Mertelj, and S. Dhara, “Magnetodielectric and magnetoviscosity response of a ferromagnetic liquid crystal at low magnetic fields,” Appl. Phys. Lett. 106, 161905 (2015).
[Crossref]

T. A. Kumar, M. A. Mohiddon, N. Dutta, N. K. Viswanathan, and S. Dhara, “Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets,” Appl. Phys. Lett. 106, 051101 (2015).
[Crossref]

Doane, J. W.

J. H. Erdmann, S. Žumer, and J. W. Doane, “Configuration transition in a nematic liquid crystal confined to a small spherical cavity,” Phys. Rev. Lett. 64(16), 1907–1910 (1990).
[Crossref] [PubMed]

Drofenik, M.

A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504, 237–241 (2013).
[Crossref] [PubMed]

D. Lisjak and M. Drofenik, “Chemical substitution - an alternative strategy for controlling the particle size of barium ferrite,” Cryst. Growth Des. 12(11), 5174–5179 (2012).
[Crossref]

Dutta, N.

T. A. Kumar, M. A. Mohiddon, N. Dutta, N. K. Viswanathan, and S. Dhara, “Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets,” Appl. Phys. Lett. 106, 051101 (2015).
[Crossref]

Erdmann, J. H.

J. H. Erdmann, S. Žumer, and J. W. Doane, “Configuration transition in a nematic liquid crystal confined to a small spherical cavity,” Phys. Rev. Lett. 64(16), 1907–1910 (1990).
[Crossref] [PubMed]

Farrell, G.

Gardiner, D. J.

Hands, P. J. W.

Hsieh, M.-H.

Hu, W.

Z. Zheng, B. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Huang, S.-Y.

Humar, M.

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Opt. Express 21, 19836–19844 (2011).
[Crossref]

M. Humar and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 19836–19844 (2011).
[Crossref]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Kachynski, A. V.

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95, 157801 (2005).
[Crossref] [PubMed]

Kavungal, V.

Kumar, T. A.

T. A. Kumar, M. A. Mohiddon, N. Dutta, N. K. Viswanathan, and S. Dhara, “Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets,” Appl. Phys. Lett. 106, 051101 (2015).
[Crossref]

Kuzmin, A. N.

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95, 157801 (2005).
[Crossref] [PubMed]

Lavrentovich, O. D.

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95, 157801 (2005).
[Crossref] [PubMed]

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Zh. Eksp. Teor. Fiz. 101, 111–125 (1992).

Lee, C.-R.

Li, W.-Y.

W.-Y. Li and S.-H. Chen, “Simulation of normal anchoring nematic droplets under electrical fields,” Jpn. J. Appl. Phys. 38, 1482–1487 (1999).
[Crossref]

Lin, J.-D.

Lisjak, D.

R. Sahoo, M. V. Rasna, D. Lisjak, A. Mertelj, and S. Dhara, “Magnetodielectric and magnetoviscosity response of a ferromagnetic liquid crystal at low magnetic fields,” Appl. Phys. Lett. 106, 161905 (2015).
[Crossref]

A. Mertelj, N. Osterman, D. Lisjak, and M. Čopič, “Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal,” Soft Matter 10, 9065–9072 (2014).
[Crossref] [PubMed]

A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504, 237–241 (2013).
[Crossref] [PubMed]

D. Lisjak and M. Drofenik, “Chemical substitution - an alternative strategy for controlling the particle size of barium ferrite,” Cryst. Growth Des. 12(11), 5174–5179 (2012).
[Crossref]

Liu, B.

Z. Zheng, B. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Liu, Q.

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” PNAS 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Q. Zhang, P. J. Ackerman, Q. Liu, and I. I. Smalyukh, “Ferromagnetic switching of knotted vector fields in liquid crystal colloids,” Phys. Rev. Lett. 115, 097802 (2015).
[Crossref] [PubMed]

Lubensky, T. C.

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” PNAS 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Mahmood, A.

Mertelj, A.

R. Sahoo, M. V. Rasna, D. Lisjak, A. Mertelj, and S. Dhara, “Magnetodielectric and magnetoviscosity response of a ferromagnetic liquid crystal at low magnetic fields,” Appl. Phys. Lett. 106, 161905 (2015).
[Crossref]

A. Mertelj, N. Osterman, D. Lisjak, and M. Čopič, “Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal,” Soft Matter 10, 9065–9072 (2014).
[Crossref] [PubMed]

A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504, 237–241 (2013).
[Crossref] [PubMed]

Mo, T.-S.

Mohiddon, M. A.

T. A. Kumar, M. A. Mohiddon, N. Dutta, N. K. Viswanathan, and S. Dhara, “Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets,” Appl. Phys. Lett. 106, 051101 (2015).
[Crossref]

Morris, S. M.

Mowatt, C.

Muševic, I.

I. Muševič, “Liquid-crystal micro-photonics,” Liquid Crystal Reviews 4, 1–34 (2016).
[Crossref]

K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
[Crossref]

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun. 4, 1489 (2013).
[Crossref] [PubMed]

M. Humar and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 19836–19844 (2011).
[Crossref]

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Opt. Express 21, 19836–19844 (2011).
[Crossref]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313, 954–958 (2006).
[Crossref]

Nych, A.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun. 4, 1489 (2013).
[Crossref] [PubMed]

Ognysta, U.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun. 4, 1489 (2013).
[Crossref] [PubMed]

Osterman, N.

A. Mertelj, N. Osterman, D. Lisjak, and M. Čopič, “Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal,” Soft Matter 10, 9065–9072 (2014).
[Crossref] [PubMed]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Pergamenshchik, V. M.

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Zh. Eksp. Teor. Fiz. 101, 111–125 (1992).

Prasad, P. N.

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95, 157801 (2005).
[Crossref] [PubMed]

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1993).

Rasna, M. V.

R. Sahoo, M. V. Rasna, D. Lisjak, A. Mertelj, and S. Dhara, “Magnetodielectric and magnetoviscosity response of a ferromagnetic liquid crystal at low magnetic fields,” Appl. Phys. Lett. 106, 161905 (2015).
[Crossref]

Ravnik, M.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun. 4, 1489 (2013).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313, 954–958 (2006).
[Crossref]

Rutledge, R.

Sahoo, R.

R. Sahoo, M. V. Rasna, D. Lisjak, A. Mertelj, and S. Dhara, “Magnetodielectric and magnetoviscosity response of a ferromagnetic liquid crystal at low magnetic fields,” Appl. Phys. Lett. 106, 161905 (2015).
[Crossref]

Sathyanarayana, P.

K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
[Crossref]

Sec, D.

K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
[Crossref]

Semenova, Y.

Shen, D.

Z. Zheng, B. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Škarabot, M.

K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
[Crossref]

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun. 4, 1489 (2013).
[Crossref] [PubMed]

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313, 954–958 (2006).
[Crossref]

Smalyukh, I. I.

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” PNAS 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Q. Zhang, P. J. Ackerman, Q. Liu, and I. I. Smalyukh, “Ferromagnetic switching of knotted vector fields in liquid crystal colloids,” Phys. Rev. Lett. 115, 097802 (2015).
[Crossref] [PubMed]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95, 157801 (2005).
[Crossref] [PubMed]

Stark, H.

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
[Crossref]

Tkalec, U.

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313, 954–958 (2006).
[Crossref]

Viswanathan, N. K.

T. A. Kumar, M. A. Mohiddon, N. Dutta, N. K. Viswanathan, and S. Dhara, “Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets,” Appl. Phys. Lett. 106, 051101 (2015).
[Crossref]

Wang, W.

Z. Zheng, B. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Wei, G.-J.

Wilkinson, T. D.

Zhang, Q.

Q. Zhang, P. J. Ackerman, Q. Liu, and I. I. Smalyukh, “Ferromagnetic switching of knotted vector fields in liquid crystal colloids,” Phys. Rev. Lett. 115, 097802 (2015).
[Crossref] [PubMed]

Zheng, Z.

Z. Zheng, B. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Zhou, L.

Z. Zheng, B. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Zuhail, K. P.

K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
[Crossref]

K. P. Zuhail and S. Dhara, “Temperature dependence of equilibrium separation and lattice parameters of nematic boojum-colloids,” Appl. Phys. Lett. 106, 211901 (2015).
[Crossref]

Žumer, S.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun. 4, 1489 (2013).
[Crossref] [PubMed]

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313, 954–958 (2006).
[Crossref]

J. H. Erdmann, S. Žumer, and J. W. Doane, “Configuration transition in a nematic liquid crystal confined to a small spherical cavity,” Phys. Rev. Lett. 64(16), 1907–1910 (1990).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

K. P. Zuhail and S. Dhara, “Temperature dependence of equilibrium separation and lattice parameters of nematic boojum-colloids,” Appl. Phys. Lett. 106, 211901 (2015).
[Crossref]

R. Sahoo, M. V. Rasna, D. Lisjak, A. Mertelj, and S. Dhara, “Magnetodielectric and magnetoviscosity response of a ferromagnetic liquid crystal at low magnetic fields,” Appl. Phys. Lett. 106, 161905 (2015).
[Crossref]

T. A. Kumar, M. A. Mohiddon, N. Dutta, N. K. Viswanathan, and S. Dhara, “Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets,” Appl. Phys. Lett. 106, 051101 (2015).
[Crossref]

Cryst. Growth Des. (1)

D. Lisjak and M. Drofenik, “Chemical substitution - an alternative strategy for controlling the particle size of barium ferrite,” Cryst. Growth Des. 12(11), 5174–5179 (2012).
[Crossref]

J. Mater. Chem. C (1)

Z. Zheng, B. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

W.-Y. Li and S.-H. Chen, “Simulation of normal anchoring nematic droplets under electrical fields,” Jpn. J. Appl. Phys. 38, 1482–1487 (1999).
[Crossref]

Liquid Crystal Reviews (1)

I. Muševič, “Liquid-crystal micro-photonics,” Liquid Crystal Reviews 4, 1–34 (2016).
[Crossref]

Nat. Commun. (1)

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun. 4, 1489 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Nature (1)

A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504, 237–241 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rep. (1)

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
[Crossref]

Phys. Rev. E (1)

K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, “Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic- A phase transition,” Phys. Rev. E 91, 030501 (2015).
[Crossref]

Phys. Rev. Lett. (3)

Q. Zhang, P. J. Ackerman, Q. Liu, and I. I. Smalyukh, “Ferromagnetic switching of knotted vector fields in liquid crystal colloids,” Phys. Rev. Lett. 115, 097802 (2015).
[Crossref] [PubMed]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95, 157801 (2005).
[Crossref] [PubMed]

J. H. Erdmann, S. Žumer, and J. W. Doane, “Configuration transition in a nematic liquid crystal confined to a small spherical cavity,” Phys. Rev. Lett. 64(16), 1907–1910 (1990).
[Crossref] [PubMed]

PNAS (1)

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” PNAS 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Science (1)

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313, 954–958 (2006).
[Crossref]

Soft Matter (1)

A. Mertelj, N. Osterman, D. Lisjak, and M. Čopič, “Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal,” Soft Matter 10, 9065–9072 (2014).
[Crossref] [PubMed]

Zh. Eksp. Teor. Fiz. (1)

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Zh. Eksp. Teor. Fiz. 101, 111–125 (1992).

Other (1)

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup. A Q-switched doubled Nd:YAG laser, triggered by the function generator, is used to induce fluorescence in the droplets, self-assembled from a suspension of ferrimagnetic nanoplatelets (Sc-doped BaFe12O19) in E7 liquid crystal and dyed with Nile red fluorescent dye. The spectrum of light emitted from the droplets is detected by the spectrometer, and the images are taken by the camera. Inset shows a setup, mounted on a microscope stage, used for applying the magnetic field either in vertical or in horizontal direction. Green and red arrows denote possible direction of movement of the magnets.
Fig. 2
Fig. 2 Ferromagnetic nematic droplet in an increasing horizontal (in-plane of the sample) magnetic field. The black arrow marks the direction of the magnetic field B .(a)–(d) Distortion inside the droplet as observed under crossed polarizers, when field is increased from 20 mT to 100 mT. White arrows mark the bright lobes that appear when the droplet is exposed to magnetic field. The lobes become more evident when field is increased. (e)–(h) Lambda plate images of the distortion at the same magnetic field values. Lambda plate is inserted at 45°, as indicated in schematics left of (e). Scale bar 20 μm.
Fig. 3
Fig. 3 Ferromagnetic nematic droplet in increasing vertical magnetic field. Direction of the magnetic field is out of the plane. (a)–(d) Distortion inside the droplet imaged under crossed polarizers when field is increased from 20 mT to 100 mT. (e)–(h) Lambda plate images of the distortion at the same magnetic field values. Lambda plate is inserted at 45° as indicated in schematics left of (e). Scale bar 20 μm.
Fig. 4
Fig. 4 WGM lasing from a typical Nile red-doped ferromagnetic nematic droplet. (a) Microscope image of emission pattern at the droplet edge below the threshold for lasing. The inset shows emission pattern for the whole droplet, when it is pumped at the bottom edge. (b) Typical WGM spectrum below the lasing threshold. (c) Microscope image of emission pattern at the droplet edge in the lasing regime. Red speckle pattern (marked with a white arrow) is seen, which is characteristic for coherent emitted light. Emission pattern for the whole droplet is shown in the inset. (d) Typical WGM spectrum above the lasing threshold. If compared to the spectrum in (a), linewidth reduction can be observed above the lasing threshold. (e) Intensity of a WGM peak as a function of the input-pulse energy density. A typical 2-slope lasing curve is observed. The lines are added as guides for the eye, indicating lasing threshold at ~170 nJ. The inset shows the linewidth dependency on input energy showing reduction at the onset of lasing. (f) WGM line below the threshold. (g) Above the threshold the width of the WGM line is reduced.
Fig. 5
Fig. 5 Wavelength shift of WGM lasing in external magnetic field for the in-plane configurations. (a)–(c) Three possible experimental configurations of B direction and pump laser spot position. In these configurations the magnetic field B is in-plane with WGM circulation. (d) Magnetic-field dependence of the WGM lasing spectrum. The lasing lines shift towards the blue part of the spectrum, the shift is linear in the magnetic field and fully reversible. The magnetic lineshift is of the order of 1 nm/100 mT.
Fig. 6
Fig. 6 Wavelength shift of WGM lasing in external magnetic field for the out-of-plane configuration. (a) Configuration of field direction and pump laser location in the experiments. (b) Magnetic field shifting on the lasing spectrum in the out-of-plane configuration towards the red part of the spectrum. The red-shift is ≈ 1 nm/100 mT.
Fig. 7
Fig. 7 Interesting behavior of some ferromagnetic nematic droplets in magnetic field. (a)–(c) The center of the droplet, containing an aggregate of nanoplatelets, moves along the direction of the applied magnetic field. (d)–(e) This droplet contains agglomerated nanoplatelets arranged in a ring close to the droplet surface. In (d) the droplet is in horizontal field. In (e) a perpendicular field component of magnetic field is added, making the overall field direction turn and the ring structure visible. In (f) the vertical component of the magnetic field is increased, making the ring turn further. (g)–(i) A droplet with a large aggregate in the center is shown first (in (g)) in zero magnetic field, in (h) we can see it in vertical field and in (i) in horizontal field. In this case the aggregated nanoplatelets form a disc-like shape, turning perpendicularly to magnetic field direction.

Metrics