Abstract

We introduce a chemical reflow method to fabricate diamond microlenses. First, photoresist pillars developed by photolithography are reflowed in organic solvent vapor atmosphere at 20 °C to form spherical segment patterns on diamond substrate. The effects of chemical solvent type and reflow time on photoresist pattern profiles are investigated. Second, via dry etching, diamond microlenses are fabricated by transferring the spherical segment pattern into substrate. Furthermore, these diamond microlenses demonstrate low numerical aperture, well-controllable curvature, and good imaging performance with projecting experiment.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of biomimetic compound eye on single crystal diamond

Yan Liang, Tianfei Zhu, Mengjia Xi, Yan Song, Jiao Fu, Dan Zhao, Yanfeng Wang, Juan Wang, Kaiyue Wang, and Hongxing Wang
Opt. Express 27(15) 20508-20515 (2019)

Refractive sapphire microlenses fabricated by chlorine-based inductively coupled plasma etching

Si-Hyun Park, Heonsu Jeon, Youn-Joon Sung, and Geun-Young Yeom
Appl. Opt. 40(22) 3698-3702 (2001)

Fabrication of monolithic diamond photodetector with microlenses

Tian-Fei Zhu, Zongchen Liu, Zhangcheng Liu, Fengnan Li, Minghui Zhang, Wei Wang, Feng Wen, Jingjing Wang, RenAn Bu, JingWen Zhang, and Hong-Xing Wang
Opt. Express 25(25) 31586-31594 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
    [Crossref] [PubMed]
  2. K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
    [Crossref]
  3. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref] [PubMed]
  4. S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
    [Crossref] [PubMed]
  5. P. Vilmi, S. Varjo, R. Sliz, J. Hannuksela, and T. Fabritius, “Disposable optics for microscopy diagnostics,” Sci. Rep. 5, 16957 (2015).
    [Crossref] [PubMed]
  6. H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of GaN negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
    [Crossref]
  7. H. Lee, D. Kim, Y. Sung, and G. Yeom, “Fabrication of SiC micro-lens by plasma etching,” Thin Solid Films 475(1-2), 318–322 (2005).
    [Crossref]
  8. H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
    [Crossref]
  9. H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
    [Crossref]
  10. T. Oder, J. Shakya, J. Lin, and H. Jiang, “Nitride microlens arrays for blue and ultraviolet wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
    [Crossref]
  11. V. Lin, H. C. Wei, H. T. Hsieh, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” IET Micro Nano Lett. 6(7), 523–526 (2011).
    [Crossref]
  12. M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Advances 5(44), 35311–35316 (2015).
    [Crossref]
  13. P. Ruffieux, T. Scharf, H. P. Herzig, R. Völkel, and K. J. Weible, “On the chromatic aberration of microlenses,” Opt. Express 14(11), 4687–4694 (2006).
    [Crossref] [PubMed]
  14. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [Crossref] [PubMed]
  15. F. K. Nikolajeff and M. Karlsson, “Diamond micro-optics,” Proc. SPIE 5183, 56–60 (2003).
    [Crossref]
  16. C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
    [Crossref]
  17. C. L. Lee, M. D. Dawson, and E. Gu, “Diamond double-side micro-lenses and reflection gratings,” Opt. Mater. 32(9), 1123–1129 (2010).
    [Crossref]
  18. H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol. B 34(2), 021602 (2016).
    [Crossref]
  19. M. Karlsson and F. Nikolajeff, “Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region,” Opt. Express 11(5), 502–507 (2003).
    [Crossref] [PubMed]
  20. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953), Chap. 13.
  21. X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), 165–169, (2012).
    [PubMed]
  22. J. Liu, M.-J. Chang, Y. Ai, H.-L. Zhang, and Y. Chen, “Fabrication of microlens arrays by localized hydrolysis in water droplet microreactors,” ACS Appl. Mater. Interfaces 5(6), 2214–2219 (2013).
    [Crossref] [PubMed]

2016 (2)

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol. B 34(2), 021602 (2016).
[Crossref]

2015 (4)

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref] [PubMed]

P. Vilmi, S. Varjo, R. Sliz, J. Hannuksela, and T. Fabritius, “Disposable optics for microscopy diagnostics,” Sci. Rep. 5, 16957 (2015).
[Crossref] [PubMed]

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Advances 5(44), 35311–35316 (2015).
[Crossref]

2013 (1)

J. Liu, M.-J. Chang, Y. Ai, H.-L. Zhang, and Y. Chen, “Fabrication of microlens arrays by localized hydrolysis in water droplet microreactors,” ACS Appl. Mater. Interfaces 5(6), 2214–2219 (2013).
[Crossref] [PubMed]

2012 (1)

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), 165–169, (2012).
[PubMed]

2011 (2)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

V. Lin, H. C. Wei, H. T. Hsieh, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” IET Micro Nano Lett. 6(7), 523–526 (2011).
[Crossref]

2010 (1)

C. L. Lee, M. D. Dawson, and E. Gu, “Diamond double-side micro-lenses and reflection gratings,” Opt. Mater. 32(9), 1123–1129 (2010).
[Crossref]

2009 (2)

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

2008 (1)

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

2006 (1)

2005 (2)

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of GaN negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

H. Lee, D. Kim, Y. Sung, and G. Yeom, “Fabrication of SiC micro-lens by plasma etching,” Thin Solid Films 475(1-2), 318–322 (2005).
[Crossref]

2004 (1)

H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

2003 (3)

T. Oder, J. Shakya, J. Lin, and H. Jiang, “Nitride microlens arrays for blue and ultraviolet wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

F. K. Nikolajeff and M. Karlsson, “Diamond micro-optics,” Proc. SPIE 5183, 56–60 (2003).
[Crossref]

M. Karlsson and F. Nikolajeff, “Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region,” Opt. Express 11(5), 502–507 (2003).
[Crossref] [PubMed]

Ai, Y.

J. Liu, M.-J. Chang, Y. Ai, H.-L. Zhang, and Y. Chen, “Fabrication of microlens arrays by localized hydrolysis in water droplet microreactors,” ACS Appl. Mater. Interfaces 5(6), 2214–2219 (2013).
[Crossref] [PubMed]

Albero, J.

Bose, R.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Chang, M.-J.

J. Liu, M.-J. Chang, Y. Ai, H.-L. Zhang, and Y. Chen, “Fabrication of microlens arrays by localized hydrolysis in water droplet microreactors,” ACS Appl. Mater. Interfaces 5(6), 2214–2219 (2013).
[Crossref] [PubMed]

Chen, B.

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

Chen, Y.

J. Liu, M.-J. Chang, Y. Ai, H.-L. Zhang, and Y. Chen, “Fabrication of microlens arrays by localized hydrolysis in water droplet microreactors,” ACS Appl. Mater. Interfaces 5(6), 2214–2219 (2013).
[Crossref] [PubMed]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Choi, H.

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of GaN negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Dawson, M.

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of GaN negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Dawson, M. D.

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol. B 34(2), 021602 (2016).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref] [PubMed]

C. L. Lee, M. D. Dawson, and E. Gu, “Diamond double-side micro-lenses and reflection gratings,” Opt. Mater. 32(9), 1123–1129 (2010).
[Crossref]

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

Ding, Y.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), 165–169, (2012).
[PubMed]

Fabritius, T.

P. Vilmi, S. Varjo, R. Sliz, J. Hannuksela, and T. Fabritius, “Disposable optics for microscopy diagnostics,” Sci. Rep. 5, 16957 (2015).
[Crossref] [PubMed]

Friel, I.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

Girkin, J.

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of GaN negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Gomez, V.

Gorecki, C.

Gu, E.

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol. B 34(2), 021602 (2016).
[Crossref]

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Advances 5(44), 35311–35316 (2015).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref] [PubMed]

C. L. Lee, M. D. Dawson, and E. Gu, “Diamond double-side micro-lenses and reflection gratings,” Opt. Mater. 32(9), 1123–1129 (2010).
[Crossref]

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of GaN negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Han, X.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Advances 5(44), 35311–35316 (2015).
[Crossref]

Hannuksela, J.

P. Vilmi, S. Varjo, R. Sliz, J. Hannuksela, and T. Fabritius, “Disposable optics for microscopy diagnostics,” Sci. Rep. 5, 16957 (2015).
[Crossref] [PubMed]

Herrnsdorf, J.

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol. B 34(2), 021602 (2016).
[Crossref]

Herzig, H. P.

Hong, B. H.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hsieh, H. T.

V. Lin, H. C. Wei, H. T. Hsieh, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” IET Micro Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Hsieh, J. L.

V. Lin, H. C. Wei, H. T. Hsieh, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” IET Micro Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Hwang, I.-C.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Jiang, H.

T. Oder, J. Shakya, J. Lin, and H. Jiang, “Nitride microlens arrays for blue and ultraviolet wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

Jiang, W.

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

Jouravlev, M. V.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Karlsson, M.

Kaufman, L. J.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kemp, A. J.

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref] [PubMed]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Kim, D.

H. Lee, D. Kim, Y. Sung, and G. Yeom, “Fabrication of SiC micro-lens by plasma etching,” Thin Solid Films 475(1-2), 318–322 (2005).
[Crossref]

Kim, K. S.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, P.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, W. Y.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, Y.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Lee, C. L.

C. L. Lee, M. D. Dawson, and E. Gu, “Diamond double-side micro-lenses and reflection gratings,” Opt. Mater. 32(9), 1123–1129 (2010).
[Crossref]

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

Lee, H.

H. Lee, D. Kim, Y. Sung, and G. Yeom, “Fabrication of SiC micro-lens by plasma etching,” Thin Solid Films 475(1-2), 318–322 (2005).
[Crossref]

Lee, K. J. Y.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Li, F.

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Li, R.

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

Li, X.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Advances 5(44), 35311–35316 (2015).
[Crossref]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), 165–169, (2012).
[PubMed]

Lin, J.

T. Oder, J. Shakya, J. Lin, and H. Jiang, “Nitride microlens arrays for blue and ultraviolet wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

Lin, V.

V. Lin, H. C. Wei, H. T. Hsieh, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” IET Micro Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Liu, C.

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of GaN negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Liu, H.

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol. B 34(2), 021602 (2016).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref] [PubMed]

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), 165–169, (2012).
[PubMed]

Liu, J.

J. Liu, M.-J. Chang, Y. Ai, H.-L. Zhang, and Y. Chen, “Fabrication of microlens arrays by localized hydrolysis in water droplet microreactors,” ACS Appl. Mater. Interfaces 5(6), 2214–2219 (2013).
[Crossref] [PubMed]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

McConnell, G.

H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Min, S. K.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Nieradko, L.

Nikolajeff, F.

Nikolajeff, F. K.

F. K. Nikolajeff and M. Karlsson, “Diamond micro-optics,” Proc. SPIE 5183, 56–60 (2003).
[Crossref]

Niu, D.

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

Oder, T.

T. Oder, J. Shakya, J. Lin, and H. Jiang, “Nitride microlens arrays for blue and ultraviolet wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

Ottevaere, H.

Päivänranta, B.

Passilly, N.

Pietarinen, J.

Reilly, S.

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref] [PubMed]

Ruffieux, P.

Savitski, V. G.

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref] [PubMed]

Scarsbrook, G. A.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

Scharf, T.

Shakya, J.

T. Oder, J. Shakya, J. Lin, and H. Jiang, “Nitride microlens arrays for blue and ultraviolet wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

Shao, J.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), 165–169, (2012).
[PubMed]

Shi, Y.

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

Sliz, R.

P. Vilmi, S. Varjo, R. Sliz, J. Hannuksela, and T. Fabritius, “Disposable optics for microscopy diagnostics,” Sci. Rep. 5, 16957 (2015).
[Crossref] [PubMed]

Su, G. D. J.

V. Lin, H. C. Wei, H. T. Hsieh, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” IET Micro Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Sung, Y.

H. Lee, D. Kim, Y. Sung, and G. Yeom, “Fabrication of SiC micro-lens by plasma etching,” Thin Solid Films 475(1-2), 318–322 (2005).
[Crossref]

Thienpont, H.

Tian, H.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), 165–169, (2012).
[PubMed]

Varjo, S.

P. Vilmi, S. Varjo, R. Sliz, J. Hannuksela, and T. Fabritius, “Disposable optics for microscopy diagnostics,” Sci. Rep. 5, 16957 (2015).
[Crossref] [PubMed]

Vilmi, P.

P. Vilmi, S. Varjo, R. Sliz, J. Hannuksela, and T. Fabritius, “Disposable optics for microscopy diagnostics,” Sci. Rep. 5, 16957 (2015).
[Crossref] [PubMed]

Völkel, R.

Wang, L.

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

Wang, M.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Advances 5(44), 35311–35316 (2015).
[Crossref]

Wang, T.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Advances 5(44), 35311–35316 (2015).
[Crossref]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Watson, I.

H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Wei, H. C.

V. Lin, H. C. Wei, H. T. Hsieh, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” IET Micro Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Weible, K. J.

Wong, C. W.

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Xie, E.

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

Yeom, G.

H. Lee, D. Kim, Y. Sung, and G. Yeom, “Fabrication of SiC micro-lens by plasma etching,” Thin Solid Films 475(1-2), 318–322 (2005).
[Crossref]

Yin, L.

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

Yu, W.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Advances 5(44), 35311–35316 (2015).
[Crossref]

Zhang, H.-L.

J. Liu, M.-J. Chang, Y. Ai, H.-L. Zhang, and Y. Chen, “Fabrication of microlens arrays by localized hydrolysis in water droplet microreactors,” ACS Appl. Mater. Interfaces 5(6), 2214–2219 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, and B. Chen, “Graphene-based bioinspired compound eyes for programmable focusing and remote actuation,” ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015).
[Crossref] [PubMed]

J. Liu, M.-J. Chang, Y. Ai, H.-L. Zhang, and Y. Chen, “Fabrication of microlens arrays by localized hydrolysis in water droplet microreactors,” ACS Appl. Mater. Interfaces 5(6), 2214–2219 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), 165–169, (2012).
[PubMed]

Appl. Phys. Lett. (2)

H. Choi, C. Liu, E. Gu, G. McConnell, J. Girkin, I. Watson, and M. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

T. Oder, J. Shakya, J. Lin, and H. Jiang, “Nitride microlens arrays for blue and ultraviolet wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

Diamond Related Materials (2)

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

H. Liu, S. Reilly, J. Herrnsdorf, E. Xie, V. G. Savitski, A. J. Kemp, E. Gu, and M. D. Dawson, “Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers,” Diamond Related Materials 65, 37–41 (2016).
[Crossref]

IET Micro Nano Lett. (1)

V. Lin, H. C. Wei, H. T. Hsieh, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” IET Micro Nano Lett. 6(7), 523–526 (2011).
[Crossref]

J. Appl. Phys. (1)

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of GaN negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

J. Vac. Sci. Technol. B (1)

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol. B 34(2), 021602 (2016).
[Crossref]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Nature (1)

K. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

C. L. Lee, M. D. Dawson, and E. Gu, “Diamond double-side micro-lenses and reflection gratings,” Opt. Mater. 32(9), 1123–1129 (2010).
[Crossref]

Proc. SPIE (1)

F. K. Nikolajeff and M. Karlsson, “Diamond micro-optics,” Proc. SPIE 5183, 56–60 (2003).
[Crossref]

RSC Advances (1)

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Advances 5(44), 35311–35316 (2015).
[Crossref]

Sci. Rep. (1)

P. Vilmi, S. Varjo, R. Sliz, J. Hannuksela, and T. Fabritius, “Disposable optics for microscopy diagnostics,” Sci. Rep. 5, 16957 (2015).
[Crossref] [PubMed]

Thin Solid Films (1)

H. Lee, D. Kim, Y. Sung, and G. Yeom, “Fabrication of SiC micro-lens by plasma etching,” Thin Solid Films 475(1-2), 318–322 (2005).
[Crossref]

Other (1)

P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953), Chap. 13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the diamond microlenses fabrication process. (b) Optical images of PR pillars and spherical segment patterns after chemical reflow treatment, respectively.
Fig. 2
Fig. 2 Images with laser scanning confocal microscope measurement in ethanol atmosphere at 20 °C for various reflow time. (a–e) 2D image for 5 s, 15 s, 30 s, 60 s, 120 s, sequentially; (f–j) 3D image for 5 s, 15 s, 30 s, 60 s, 120 s, sequentially.
Fig. 3
Fig. 3 The LSCM measured and fitted surface profiles of PR spherical segment patterns on diamond substrate formed in ethanol atmosphere for various time.
Fig. 4
Fig. 4 Optical parameters of PR spherical segment patterns reflowed for different reflow time in different solvent types, acetone, isopropanol and ethanol. (a) Radius, (b) height of PR spherical segment pattern, (c) ratio of radius to height, and (d) radius of curvature obtained by fitting, versus reflow time.
Fig. 5
Fig. 5 (a–c) SEM images of fabricated microlenses with different sizes. (d–i) Interferometer pictures and step profiler measured cross-sections of microlenses in (a–c), sequentially.
Fig. 6
Fig. 6 (a) Simplified setups of the optical system for the projection measurements. (b) Images projected by the microlenses with diameter of 123, 128, 138 μm with ‘A’ photomask, objective: 20 × .

Tables (1)

Tables Icon

Table 1 Optical parameters of diamond microlenses calculated with radius, height and n.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

NA= r f
f= ROC n1 ,
ROC= ( h 2 + r 2 ) 2h

Metrics