Abstract

A new nonlinear Sagnac interferometer (NSI) is proposed by replacing the beam-splitter in the traditional Sagnac interferometer (TSI) with a four-wave mixing process. Such a NSI has better angular velocity sensitivity than the one of the TSI. The standard quantum limit can be beaten and the Heisenberg Limit can even be reached for the ideal case by the NSI. We study the effect of the losses on the angular velocity sensitivity of the NSI and find that the optimal angular velocity, where the best angular velocity sensitivity can be obtained, of the NSI may be dependent on the losses inside the interferometer. Such a NSI has its advantages compared with the TSI and may find its potential applications in quantum metrology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid interferometer with nonlinear four-wave mixing process and linear beam splitter

Shengshuai Liu and Jietai Jing
Opt. Express 25(14) 15854-15860 (2017)

Quantum steering in cascaded four-wave mixing processes

Li Wang, Shuchao Lv, and Jietai Jing
Opt. Express 25(15) 17457-17465 (2017)

Effect of losses on multipartite entanglement from cascaded four-wave mixing processes

Tianxiang Wei, Shuchao Lv, and Jietai Jing
J. Opt. Soc. Am. B 35(11) 2806-2814 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Sagnac and C. R. Acad, “L’ether lumineux demontre par l’effect du vent relatif d’ether dans un interferometre en rotation uniforme,” Science 157, 708–710 (1913).
  2. E. J. Post, “Sagnac Effect,” Rev. Mod. Phys. 39, 475 (1967).
    [Crossref]
  3. A. Shamir, “An overview of Optical Gyroscopes Theory, Practical Aspects, Applications and Future Trends,” (2006), http://www.angelfire.com/planet/adi_shamir/Optical%20Gyroscopes[1].pdf
  4. W. W. Chow, J. Gea-Banacloche, and L. M. Pedrotti, “The ring laser gyro,” Rev. Mod. Phys. 57, 61 (1985).
    [Crossref]
  5. A. Kolkiran and G. S. Agarwal, “Heisenberg limited Sagnac interferometry,” Opt. Express 15(11), 6798 (2007).
    [Crossref] [PubMed]
  6. G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011 (2006).
    [Crossref]
  7. T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision Rotation Measurements with an Atom Interferometer Gyroscope,” Phys. Rev. Lett. 78, 2046 (1997).
    [Crossref]
  8. A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rbuenstein, and D. E. Pritchard, “Rotation Sensing with an Atom Interferometer,” Phys. Rev. Lett. 78, 760 (1997).
    [Crossref]
  9. P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
    [Crossref] [PubMed]
  10. J. J. Cooper, D. W. Hallwood, and J. A. Dunningham, “Entanglement-enhanced atomic gyroscope,” Phys. Rev. A 81, 043624 (2010).
    [Crossref]
  11. M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Opt. Express 19(4), 3765 (2011).
    [Crossref] [PubMed]
  12. H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
    [Crossref]
  13. Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
    [Crossref]
  14. H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
    [Crossref]
  15. Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
    [Crossref] [PubMed]
  16. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178 (2007).
    [Crossref]
  17. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321, 544 (2008).
    [Crossref] [PubMed]
  18. A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101, 093602 (2008).
    [Crossref] [PubMed]
  19. V. Boyer, A. M. Marino, and P. D. Lett, “Generation of Spatially Broadband Twin Beams for Quantum Imaging,” Phys. Rev. Lett. 100, 143601 (2008).
    [Crossref] [PubMed]
  20. R. C. Pooser and B. J. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2(5), 393 (2015).
    [Crossref]
  21. B. J. Lawrie, Y. Yang, M. Eaton, A. N. Eaton, A. N. Black, and R. C. Pooser, “Robust and compact entanglement generation from diode-laser-pumped four-wave mixing,” Appl. Phys. Lett. 108, 151107 (2016).
    [Crossref]
  22. M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3(9), 985 (2016).
    [Crossref]
  23. M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016).
    [Crossref]
  24. O. Danaci, C. Rios, and R. T. Glasser, “All-optical mode conversion via spatially multimode four-wave mixing,” New J. Phys. 18, 073032 (2016).
    [Crossref]
  25. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859 (2009).
    [Crossref] [PubMed]
  26. B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1,1) interferometers,” Phys. Rev. A 33, 4033 (1986).
    [Crossref]
  27. C. C. Gerry, “Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime,” Phys. Rev. A 61, 043811 (2000).
    [Crossref]
  28. J. Sahota and D. F. V. James, “Quantum-enhanced phase estimation with an amplified Bell state,” Phys. Rev. A 88, 063820 (2013).
    [Crossref]
  29. J. Sahota and N. Quesada, “Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement,” Phys. Rev. A 91, 013808 (2015).
    [Crossref]
  30. J. Jing, C. Liu, Z. Zhou, Z. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
    [Crossref]
  31. F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, and W. Zhang, “Quantum metrology with parametric amplifierbased photon correlation interferometers,” Nature Commun. 5, 3049 (2014).
    [Crossref]
  32. J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
    [Crossref]
  33. A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
    [Crossref] [PubMed]
  34. M. Jarzyna and R. Demkowicz-Dobrzański, “Quantum interferometry with and without an external phase reference,” Phys. Rev. A 85, 011801 (2012).
    [Crossref]
  35. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981).
    [Crossref]
  36. V. G. Voronov, “Quantum noise in optical interferometers,” Phys. Rev. A 81, 053816 (2010).
    [Crossref]
  37. T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons,” Phys. Rev. A 57, 4004 (1998).
    [Crossref]
  38. T Kim, Y. Ha, J. Shin, H. Kim, and G. Park, “Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer,” Phys. Rev. A 60, 708 (1999).
    [Crossref]
  39. T. Ono and H. F. Hofmann, “Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum,” Phys. Rev. A 81, 033819 (2010).
    [Crossref]
  40. R. Ghobadi, A. Lvovsky, and C. Simon, “Creating and Detecting Micro-Macro Photon-Number Entanglement by Amplifying and Deamplifying a Single-Photon Entangled State,” Phys. Rev. Lett. 110, 170406 (2013).
    [Crossref] [PubMed]

2016 (6)

M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016).
[Crossref]

O. Danaci, C. Rios, and R. T. Glasser, “All-optical mode conversion via spatially multimode four-wave mixing,” New J. Phys. 18, 073032 (2016).
[Crossref]

Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
[Crossref]

J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

B. J. Lawrie, Y. Yang, M. Eaton, A. N. Eaton, A. N. Black, and R. C. Pooser, “Robust and compact entanglement generation from diode-laser-pumped four-wave mixing,” Appl. Phys. Lett. 108, 151107 (2016).
[Crossref]

M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3(9), 985 (2016).
[Crossref]

2015 (4)

R. C. Pooser and B. J. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2(5), 393 (2015).
[Crossref]

J. Sahota and N. Quesada, “Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement,” Phys. Rev. A 91, 013808 (2015).
[Crossref]

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
[Crossref] [PubMed]

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

2014 (3)

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
[Crossref]

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, and W. Zhang, “Quantum metrology with parametric amplifierbased photon correlation interferometers,” Nature Commun. 5, 3049 (2014).
[Crossref]

H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
[Crossref]

2013 (2)

J. Sahota and D. F. V. James, “Quantum-enhanced phase estimation with an amplified Bell state,” Phys. Rev. A 88, 063820 (2013).
[Crossref]

R. Ghobadi, A. Lvovsky, and C. Simon, “Creating and Detecting Micro-Macro Photon-Number Entanglement by Amplifying and Deamplifying a Single-Photon Entangled State,” Phys. Rev. Lett. 110, 170406 (2013).
[Crossref] [PubMed]

2012 (2)

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

M. Jarzyna and R. Demkowicz-Dobrzański, “Quantum interferometry with and without an external phase reference,” Phys. Rev. A 85, 011801 (2012).
[Crossref]

2011 (2)

J. Jing, C. Liu, Z. Zhou, Z. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Opt. Express 19(4), 3765 (2011).
[Crossref] [PubMed]

2010 (3)

V. G. Voronov, “Quantum noise in optical interferometers,” Phys. Rev. A 81, 053816 (2010).
[Crossref]

T. Ono and H. F. Hofmann, “Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum,” Phys. Rev. A 81, 033819 (2010).
[Crossref]

J. J. Cooper, D. W. Hallwood, and J. A. Dunningham, “Entanglement-enhanced atomic gyroscope,” Phys. Rev. A 81, 043624 (2010).
[Crossref]

2009 (1)

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

2008 (3)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101, 093602 (2008).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of Spatially Broadband Twin Beams for Quantum Imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011 (2006).
[Crossref]

2000 (1)

C. C. Gerry, “Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime,” Phys. Rev. A 61, 043811 (2000).
[Crossref]

1999 (1)

T Kim, Y. Ha, J. Shin, H. Kim, and G. Park, “Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer,” Phys. Rev. A 60, 708 (1999).
[Crossref]

1998 (1)

T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons,” Phys. Rev. A 57, 4004 (1998).
[Crossref]

1997 (2)

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision Rotation Measurements with an Atom Interferometer Gyroscope,” Phys. Rev. Lett. 78, 2046 (1997).
[Crossref]

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rbuenstein, and D. E. Pritchard, “Rotation Sensing with an Atom Interferometer,” Phys. Rev. Lett. 78, 760 (1997).
[Crossref]

1986 (1)

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1,1) interferometers,” Phys. Rev. A 33, 4033 (1986).
[Crossref]

1985 (1)

W. W. Chow, J. Gea-Banacloche, and L. M. Pedrotti, “The ring laser gyro,” Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

1981 (1)

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981).
[Crossref]

1967 (1)

E. J. Post, “Sagnac Effect,” Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

1913 (1)

G. Sagnac and C. R. Acad, “L’ether lumineux demontre par l’effect du vent relatif d’ether dans un interferometre en rotation uniforme,” Science 157, 708–710 (1913).

Abend, S.

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

Acad, C. R.

G. Sagnac and C. R. Acad, “L’ether lumineux demontre par l’effect du vent relatif d’ether dans un interferometre en rotation uniforme,” Science 157, 708–710 (1913).

Achal, R.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Agarwal, G. S.

Ahmed, I.

Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
[Crossref]

Alibart, O.

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011 (2006).
[Crossref]

Arimondo, E.

Baldi, P.

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011 (2006).
[Crossref]

Berg, P.

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

Bertocchi, G.

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011 (2006).
[Crossref]

Black, A. N.

B. J. Lawrie, Y. Yang, M. Eaton, A. N. Eaton, A. N. Black, and R. C. Pooser, “Robust and compact entanglement generation from diode-laser-pumped four-wave mixing,” Appl. Phys. Lett. 108, 151107 (2016).
[Crossref]

Bouyer, P.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision Rotation Measurements with an Atom Interferometer Gyroscope,” Phys. Rev. Lett. 78, 2046 (1997).
[Crossref]

Boyer, V.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101, 093602 (2008).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of Spatially Broadband Twin Beams for Quantum Imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178 (2007).
[Crossref]

Brannan, T.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Caves, C. M.

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981).
[Crossref]

Chapman, M. S.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rbuenstein, and D. E. Pritchard, “Rotation Sensing with an Atom Interferometer,” Phys. Rev. Lett. 78, 760 (1997).
[Crossref]

Che, J.

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
[Crossref] [PubMed]

Chen, H.

H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
[Crossref]

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
[Crossref]

Chow, W. W.

W. W. Chow, J. Gea-Banacloche, and L. M. Pedrotti, “The ring laser gyro,” Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Cooper, J. J.

J. J. Cooper, D. W. Hallwood, and J. A. Dunningham, “Entanglement-enhanced atomic gyroscope,” Phys. Rev. A 81, 043624 (2010).
[Crossref]

Danaci, O.

O. Danaci, C. Rios, and R. T. Glasser, “All-optical mode conversion via spatially multimode four-wave mixing,” New J. Phys. 18, 073032 (2016).
[Crossref]

Davidson, R.

Demkowicz-Dobrzanski, R.

M. Jarzyna and R. Demkowicz-Dobrzański, “Quantum interferometry with and without an external phase reference,” Phys. Rev. A 85, 011801 (2012).
[Crossref]

Dowran, M.

Dunningham, J. A.

J. J. Cooper, D. W. Hallwood, and J. A. Dunningham, “Entanglement-enhanced atomic gyroscope,” Phys. Rev. A 81, 043624 (2010).
[Crossref]

Eaton, A. N.

B. J. Lawrie, Y. Yang, M. Eaton, A. N. Eaton, A. N. Black, and R. C. Pooser, “Robust and compact entanglement generation from diode-laser-pumped four-wave mixing,” Appl. Phys. Lett. 108, 151107 (2016).
[Crossref]

Eaton, M.

B. J. Lawrie, Y. Yang, M. Eaton, A. N. Eaton, A. N. Black, and R. C. Pooser, “Robust and compact entanglement generation from diode-laser-pumped four-wave mixing,” Appl. Phys. Lett. 108, 151107 (2016).
[Crossref]

Ertmer, W.

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

Gea-Banacloche, J.

W. W. Chow, J. Gea-Banacloche, and L. M. Pedrotti, “The ring laser gyro,” Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Gerry, C. C.

C. C. Gerry, “Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime,” Phys. Rev. A 61, 043811 (2000).
[Crossref]

Ghobadi, R.

R. Ghobadi, A. Lvovsky, and C. Simon, “Creating and Detecting Micro-Macro Photon-Number Entanglement by Amplifying and Deamplifying a Single-Photon Entangled State,” Phys. Rev. Lett. 110, 170406 (2013).
[Crossref] [PubMed]

Giese, E.

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

Glasser, R. T.

O. Danaci, C. Rios, and R. T. Glasser, “All-optical mode conversion via spatially multimode four-wave mixing,” New J. Phys. 18, 073032 (2016).
[Crossref]

Gustavson, T. L.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision Rotation Measurements with an Atom Interferometer Gyroscope,” Phys. Rev. Lett. 78, 2046 (1997).
[Crossref]

Ha, Y.

T Kim, Y. Ha, J. Shin, H. Kim, and G. Park, “Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer,” Phys. Rev. A 60, 708 (1999).
[Crossref]

Hall, J. L.

T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons,” Phys. Rev. A 57, 4004 (1998).
[Crossref]

Hallwood, D. W.

J. J. Cooper, D. W. Hallwood, and J. A. Dunningham, “Entanglement-enhanced atomic gyroscope,” Phys. Rev. A 81, 043624 (2010).
[Crossref]

Hammond, T. D.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rbuenstein, and D. E. Pritchard, “Rotation Sensing with an Atom Interferometer,” Phys. Rev. Lett. 78, 760 (1997).
[Crossref]

Hofmann, H. F.

T. Ono and H. F. Hofmann, “Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum,” Phys. Rev. A 81, 033819 (2010).
[Crossref]

Holland, M. J.

T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons,” Phys. Rev. A 57, 4004 (1998).
[Crossref]

Holtfrerich, M. W.

M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016).
[Crossref]

M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3(9), 985 (2016).
[Crossref]

Hudelist, F.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, and W. Zhang, “Quantum metrology with parametric amplifierbased photon correlation interferometers,” Nature Commun. 5, 3049 (2014).
[Crossref]

James, D. F. V.

J. Sahota and D. F. V. James, “Quantum-enhanced phase estimation with an amplified Bell state,” Phys. Rev. A 88, 063820 (2013).
[Crossref]

Jarzyna, M.

M. Jarzyna and R. Demkowicz-Dobrzański, “Quantum interferometry with and without an external phase reference,” Phys. Rev. A 85, 011801 (2012).
[Crossref]

Jasperse, M.

Jiang, T.

H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
[Crossref]

Jing, J.

J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, and W. Zhang, “Quantum metrology with parametric amplifierbased photon correlation interferometers,” Nature Commun. 5, 3049 (2014).
[Crossref]

J. Jing, C. Liu, Z. Zhou, Z. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Jones, K. M.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101, 093602 (2008).
[Crossref] [PubMed]

Kasevich, M. A.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision Rotation Measurements with an Atom Interferometer Gyroscope,” Phys. Rev. Lett. 78, 2046 (1997).
[Crossref]

Kim, H.

T Kim, Y. Ha, J. Shin, H. Kim, and G. Park, “Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer,” Phys. Rev. A 60, 708 (1999).
[Crossref]

Kim, T

T Kim, Y. Ha, J. Shin, H. Kim, and G. Park, “Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer,” Phys. Rev. A 60, 708 (1999).
[Crossref]

Kim, T.

T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons,” Phys. Rev. A 57, 4004 (1998).
[Crossref]

Klauder, J. R.

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1,1) interferometers,” Phys. Rev. A 33, 4033 (1986).
[Crossref]

Kolkiran, A.

Kong, J.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, and W. Zhang, “Quantum metrology with parametric amplifierbased photon correlation interferometers,” Nature Commun. 5, 3049 (2014).
[Crossref]

Lawrie, B. J.

Lemons, K.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101, 093602 (2008).
[Crossref] [PubMed]

Lenef, A.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rbuenstein, and D. E. Pritchard, “Rotation Sensing with an Atom Interferometer,” Phys. Rev. Lett. 78, 760 (1997).
[Crossref]

Lett, P. D.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of Spatially Broadband Twin Beams for Quantum Imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref] [PubMed]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101, 093602 (2008).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178 (2007).
[Crossref]

Li, C.

Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
[Crossref]

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
[Crossref] [PubMed]

Li, Z.

Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
[Crossref]

Liu, C.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, and W. Zhang, “Quantum metrology with parametric amplifierbased photon correlation interferometers,” Nature Commun. 5, 3049 (2014).
[Crossref]

J. Jing, C. Liu, Z. Zhou, Z. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Lvovsky, A.

R. Ghobadi, A. Lvovsky, and C. Simon, “Creating and Detecting Micro-Macro Photon-Number Entanglement by Amplifying and Deamplifying a Single-Photon Entangled State,” Phys. Rev. Lett. 110, 170406 (2013).
[Crossref] [PubMed]

Lvovsky, A. I.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

MacRae, A.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Marino, A. M.

M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016).
[Crossref]

M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3(9), 985 (2016).
[Crossref]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101, 093602 (2008).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of Spatially Broadband Twin Beams for Quantum Imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

McCall, S. L.

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1,1) interferometers,” Phys. Rev. A 33, 4033 (1986).
[Crossref]

McCormick, C. F.

Narducci, F. A.

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

Noh, J.

T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons,” Phys. Rev. A 57, 4004 (1998).
[Crossref]

Ono, T.

T. Ono and H. F. Hofmann, “Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum,” Phys. Rev. A 81, 033819 (2010).
[Crossref]

Ostrowsky, D. B.

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011 (2006).
[Crossref]

Ou, Z.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, and W. Zhang, “Quantum metrology with parametric amplifierbased photon correlation interferometers,” Nature Commun. 5, 3049 (2014).
[Crossref]

J. Jing, C. Liu, Z. Zhou, Z. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Park, G.

T Kim, Y. Ha, J. Shin, H. Kim, and G. Park, “Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer,” Phys. Rev. A 60, 708 (1999).
[Crossref]

Pedrotti, L. M.

W. W. Chow, J. Gea-Banacloche, and L. M. Pedrotti, “The ring laser gyro,” Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Pfister, O.

T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons,” Phys. Rev. A 57, 4004 (1998).
[Crossref]

Pooser, R. C.

B. J. Lawrie, Y. Yang, M. Eaton, A. N. Eaton, A. N. Black, and R. C. Pooser, “Robust and compact entanglement generation from diode-laser-pumped four-wave mixing,” Appl. Phys. Lett. 108, 151107 (2016).
[Crossref]

M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3(9), 985 (2016).
[Crossref]

R. C. Pooser and B. J. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2(5), 393 (2015).
[Crossref]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101, 093602 (2008).
[Crossref] [PubMed]

Post, E. J.

E. J. Post, “Sagnac Effect,” Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

Pritchard, D. E.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rbuenstein, and D. E. Pritchard, “Rotation Sensing with an Atom Interferometer,” Phys. Rev. Lett. 78, 760 (1997).
[Crossref]

Qin, M.

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
[Crossref]

Quesada, N.

J. Sahota and N. Quesada, “Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement,” Phys. Rev. A 91, 013808 (2015).
[Crossref]

Rasel, E. M.

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

Rbuenstein, R. A.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rbuenstein, and D. E. Pritchard, “Rotation Sensing with an Atom Interferometer,” Phys. Rev. Lett. 78, 760 (1997).
[Crossref]

Rios, C.

O. Danaci, C. Rios, and R. T. Glasser, “All-optical mode conversion via spatially multimode four-wave mixing,” New J. Phys. 18, 073032 (2016).
[Crossref]

Sagnac, G.

G. Sagnac and C. R. Acad, “L’ether lumineux demontre par l’effect du vent relatif d’ether dans un interferometre en rotation uniforme,” Science 157, 708–710 (1913).

Sahota, J.

J. Sahota and N. Quesada, “Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement,” Phys. Rev. A 91, 013808 (2015).
[Crossref]

J. Sahota and D. F. V. James, “Quantum-enhanced phase estimation with an amplified Bell state,” Phys. Rev. A 88, 063820 (2013).
[Crossref]

Schleich, W. P.

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

Scholten, R. E.

Schubert, C.

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

Shin, J.

T Kim, Y. Ha, J. Shin, H. Kim, and G. Park, “Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer,” Phys. Rev. A 60, 708 (1999).
[Crossref]

Simon, C.

R. Ghobadi, A. Lvovsky, and C. Simon, “Creating and Detecting Micro-Macro Photon-Number Entanglement by Amplifying and Deamplifying a Single-Photon Entangled State,” Phys. Rev. Lett. 110, 170406 (2013).
[Crossref] [PubMed]

Smith, E. T.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rbuenstein, and D. E. Pritchard, “Rotation Sensing with an Atom Interferometer,” Phys. Rev. Lett. 78, 760 (1997).
[Crossref]

Tackmann, G.

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

Tanzilli, S.

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011 (2006).
[Crossref]

Turner, L. D.

Voronov, V. G.

V. G. Voronov, “Quantum noise in optical interferometers,” Phys. Rev. A 81, 053816 (2010).
[Crossref]

Wang, H.

J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Wang, X.

Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
[Crossref]

Wen, F.

Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
[Crossref]

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
[Crossref] [PubMed]

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
[Crossref]

Wen, J.

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
[Crossref]

Xiao, M.

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
[Crossref] [PubMed]

Xin, J.

J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Yang, C.

H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
[Crossref]

Yang, Y.

B. J. Lawrie, Y. Yang, M. Eaton, A. N. Eaton, A. N. Black, and R. C. Pooser, “Robust and compact entanglement generation from diode-laser-pumped four-wave mixing,” Appl. Phys. Lett. 108, 151107 (2016).
[Crossref]

Yurke, B.

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1,1) interferometers,” Phys. Rev. A 33, 4033 (1986).
[Crossref]

Zhang, D.

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
[Crossref] [PubMed]

Zhang, W.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, and W. Zhang, “Quantum metrology with parametric amplifierbased photon correlation interferometers,” Nature Commun. 5, 3049 (2014).
[Crossref]

J. Jing, C. Liu, Z. Zhou, Z. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Zhang, X.

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
[Crossref]

H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
[Crossref]

Zhang, Y.

Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
[Crossref]

Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
[Crossref]

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
[Crossref] [PubMed]

H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
[Crossref]

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
[Crossref]

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
[Crossref] [PubMed]

Zheng, H.

H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
[Crossref]

Zhou, Z.

J. Jing, C. Liu, Z. Zhou, Z. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Zhu, D.

H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
[Crossref]

Appl. Phys. Lett. (3)

B. J. Lawrie, Y. Yang, M. Eaton, A. N. Eaton, A. N. Black, and R. C. Pooser, “Robust and compact entanglement generation from diode-laser-pumped four-wave mixing,” Appl. Phys. Lett. 108, 151107 (2016).
[Crossref]

J. Jing, C. Liu, Z. Zhou, Z. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011 (2006).
[Crossref]

Laser Phys. Lett. (2)

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in an atomic ensemble,” Laser Phys. Lett. 11, 045201 (2014).
[Crossref]

Z. Li, X. Wang, C. Li, Y. Zhang, F. Wen, I. Ahmed, and Y. Zhang, “Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble,” Laser Phys. Lett. 13, 025402 (2016).
[Crossref]

Nature (1)

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

Nature Commun. (1)

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, and W. Zhang, “Quantum metrology with parametric amplifierbased photon correlation interferometers,” Nature Commun. 5, 3049 (2014).
[Crossref]

New J. Phys. (1)

O. Danaci, C. Rios, and R. T. Glasser, “All-optical mode conversion via spatially multimode four-wave mixing,” New J. Phys. 18, 073032 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (2)

Phys. Rev. A (12)

M. W. Holtfrerich and A. M. Marino, “Control of the size of the coherence area in entangled twin beams,” Phys. Rev. A 93, 063821 (2016).
[Crossref]

M. Jarzyna and R. Demkowicz-Dobrzański, “Quantum interferometry with and without an external phase reference,” Phys. Rev. A 85, 011801 (2012).
[Crossref]

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1,1) interferometers,” Phys. Rev. A 33, 4033 (1986).
[Crossref]

C. C. Gerry, “Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime,” Phys. Rev. A 61, 043811 (2000).
[Crossref]

J. Sahota and D. F. V. James, “Quantum-enhanced phase estimation with an amplified Bell state,” Phys. Rev. A 88, 063820 (2013).
[Crossref]

J. Sahota and N. Quesada, “Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement,” Phys. Rev. A 91, 013808 (2015).
[Crossref]

J. J. Cooper, D. W. Hallwood, and J. A. Dunningham, “Entanglement-enhanced atomic gyroscope,” Phys. Rev. A 81, 043624 (2010).
[Crossref]

H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, and Y. Zhang, “Dressed four-wave mixing second-order Talbot effect,” Phys. Rev. A 90, 043846 (2014).
[Crossref]

V. G. Voronov, “Quantum noise in optical interferometers,” Phys. Rev. A 81, 053816 (2010).
[Crossref]

T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons,” Phys. Rev. A 57, 4004 (1998).
[Crossref]

T Kim, Y. Ha, J. Shin, H. Kim, and G. Park, “Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer,” Phys. Rev. A 60, 708 (1999).
[Crossref]

T. Ono and H. F. Hofmann, “Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum,” Phys. Rev. A 81, 033819 (2010).
[Crossref]

Phys. Rev. D (1)

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981).
[Crossref]

Phys. Rev. Lett. (7)

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101, 093602 (2008).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of Spatially Broadband Twin Beams for Quantum Imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref] [PubMed]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision Rotation Measurements with an Atom Interferometer Gyroscope,” Phys. Rev. Lett. 78, 2046 (1997).
[Crossref]

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rbuenstein, and D. E. Pritchard, “Rotation Sensing with an Atom Interferometer,” Phys. Rev. Lett. 78, 760 (1997).
[Crossref]

P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, “Composite-Light-Pulse Technique for High-Precision Atom Interferometry,” Phys. Rev. Lett. 114, 063002 (2015).
[Crossref] [PubMed]

R. Ghobadi, A. Lvovsky, and C. Simon, “Creating and Detecting Micro-Macro Photon-Number Entanglement by Amplifying and Deamplifying a Single-Photon Entangled State,” Phys. Rev. Lett. 110, 170406 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

E. J. Post, “Sagnac Effect,” Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

W. W. Chow, J. Gea-Banacloche, and L. M. Pedrotti, “The ring laser gyro,” Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Science (2)

G. Sagnac and C. R. Acad, “L’ether lumineux demontre par l’effect du vent relatif d’ether dans un interferometre en rotation uniforme,” Science 157, 708–710 (1913).

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

Scientific Reports (1)

Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, “Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor,” Scientific Reports 5, 15058 (2015).
[Crossref] [PubMed]

Other (1)

A. Shamir, “An overview of Optical Gyroscopes Theory, Practical Aspects, Applications and Future Trends,” (2006), http://www.angelfire.com/planet/adi_shamir/Optical%20Gyroscopes[1].pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schemes of the TSI and NSI. a, the TSI; b, the NSI.
Fig. 2
Fig. 2 The comparison of the angular velocity sensitivity versus the angular velocity between the TSI and NSI where it is assumed that the total intensity of the fields inside both two interferometers is Ns = 104. The black line is the angular velocity sensitivity of the TSI. The green and blue lines are the corresponding ones of the NSI with G2 = 3 and G2 = 10. The dash lines colored by purple and red are the corresponding SQL and HL which are respectively characterized by the angular velocity sensitivity scalings of 1 / N s and 1/Ns. Here it should be noted that the value of the HL (ΔΩ = 1/Ns = 10−4) is too small to be distinguished from the zero line in Fig. 2.
Fig. 3
Fig. 3 The angular velocity sensitivity scalings of the NSI for the case of no input into the interferometer. The green, blue, brown and black lines are the angular velocity sensitivity of the NSI versus Ns with different Ω. The dash lines colored by purple and red are the corresponding SQL and HL.
Fig. 4
Fig. 4 The effect of the losses on the angular velocity sensitivity of the NSI for the case of seeding coherent state where Ω = 2. The green, yellow, blue and black lines are the angular velocity sensitivity scalings of the NSI with different η1, η2 and η3. The dash lines colored by purple and red are the corresponding SQL and HL.
Fig. 5
Fig. 5 The effect of the losses on the angular velocity sensitivity of the NSI with no input into the interferometer. The green (yellow) line is the angular velocity sensitivity of the NSI with Ω → 2 and η2 = 0 for the case of η3 = 0 (η3 = 0.2). Here it should be noted that green line is too closed to the yellow line such that it is hard to distinguish the green line from the yellow one. The blue (brown) line is the corresponding one with η3 = 0.2 and Ω → 2 for the case of η2 = 0.01 (η2 = 0.1). The black line is the corresponding one of the NSI with Ω = 0.04 for the case of η2 = 0.1 and η3 = 0.2. The dash lines colored by purple and red are the corresponding SQL and HL. The inset of Fig. 5 shows the optimal angular velocity versus different η2.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 8 π N A Ω c λ ,
( a ^ BS b ^ BS ) = U BS ( a ^ in b ^ in ) = 1 2 ( 1 1 1 1 ) ( a ^ in b ^ in ) ,
( a ^ SG b ^ SG ) = T SG ( a ^ BS b ^ BS ) = ( 1 0 0 e i ϕ ) ( a ^ BS b ^ BS ) ,
( a ^ out b ^ out ) = U BS T SG U BS ( a ^ in b ^ in ) = ( e i ϕ cos ϕ 2 a ^ in i e i ϕ sin ϕ 2 b ^ in i e i ϕ sin ϕ 2 a ^ in + e i ϕ cos ϕ 2 b ^ in ) .
Δ Ω 2 = ( Δ N ^ ) 2 | N ^ / Ω | 2 ,
Δ N ^ b 2 = sin 2 β Ω 2 a in a in
N ^ b Ω = β sin β Ω a in a in 2 ,
Δ Ω TSI = 1 β 2 ( 1 + cos β Ω ) N s ,
( a ^ FWM b ^ FWM ) = U PA ( a ^ in b ^ in ) = ( G g g G ) ( a ^ in b in ) ,
( a ^ out b ^ out ) = ( ( G 2 + g 2 e i ϕ ) a ^ in + G g ( 1 + e i ϕ ) b ^ in G g ( 1 + e i ϕ ) a ^ in + ( G 2 e i ϕ + g 2 ) b ^ in ) .
Δ N ^ b 2 = 4 G 4 g 4 ( 1 + cos β Ω ) 2 ( 2 a ^ in a in + 1 ) + 2 G 2 g 2 ( 1 + cos β Ω ) ( a ^ in a ^ in + 1 )
N ^ Ω = 2 β G 2 g 2 sin β Ω ( a ^ in a ^ in + 1 ) .
Δ Ω NSI = 1 β 4 G 2 g 2 ( G 2 + g 2 ) ( 1 cos β Ω ) + G 2 + g 2 2 G 2 g 2 N s ( 1 + cos β Ω ) ,
Δ Ω NSI = 1 β N s ( N s + 2 ) ( 1 cos β Ω ) + 2 N s ( N s + 2 ) ( 1 + cos β Ω ) ,
a ^ = 1 η a ^ + η ν ^
Δ Ω NSI = 1 β ( G 2 + g 2 ) [ 4 ( 1 η 2 ) ( 1 η 3 ) G 2 g 2 ( 1 cos β Ω ) + 1 η 2 η 3 + 2 g 2 η 2 ( 1 η 3 ) ] 2 G 2 g 2 N s ( 1 η 1 ) ( 1 η 2 ) ( 1 η 3 ) ( 1 + cos β Ω ) ,
Δ Ω NSI = 1 β 1 cos β Ω 1 + cos β Ω + 2 ( N s η 2 + 1 N s η 2 η 3 ) N s ( N s + 2 ) ( 1 η 2 ) ( 1 η 3 ) ( 1 + cos β Ω ) + η 2 ( N s η 2 N s η 2 η 3 + 2 2 η 3 + 2 η 2 η 3 ) N s ( N s + 2 ) 2 ( 1 η 2 ) 2 ( 1 η 3 ) sin 2 β Ω ,

Metrics