Abstract

In this work, a compact and ultrahigh-resolution Fourier-transform spectrometer design is presented which is in great demand in numerous areas. The spectrometer is formed by sequentially-activated 60 Mach-Zehnder interferometers that are connected to photodetectors through very-low-loss beam combiners based on two-mode interference. The long optical delays are provided by tapping the propagating light out at certain locations on the optical waveguides by using electro-optically-controlled directional couplers. A design example with a spectral resolution of 500 MHz (~1 pm) and bandwidth of 15 GHz is presented for a device size of only 2 cm × 0.5 cm (1 cm2).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis and design of compact, static Fourier-transform spectrometers

Carole C. Montarou and Thomas K. Gaylord
Appl. Opt. 39(31) 5762-5767 (2000)

Compact ultrahigh resolution interferometric spectrometer

Qinghua Yang
Opt. Express 27(21) 30606-30617 (2019)

High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides

Aitor V. Velasco, Pavel Cheben, Przemek J. Bock, André Delâge, Jens H. Schmid, Jean Lapointe, Siegfried Janz, María L. Calvo, Dan-Xia Xu, Mirosław Florjańczyk, and Martin Vachon
Opt. Lett. 38(5) 706-708 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. V. Tkachenko, Optical Spectroscopy (Elsevier Science, 2006).
  2. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
    [Crossref]
  3. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
    [Crossref] [PubMed]
  4. P. Cheben, I. Powell, S. Janz, and D.-X. Xu, “Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating,” Opt. Lett. 30(14), 1824–1826 (2005).
    [Crossref] [PubMed]
  5. R. F. Wolffenbuttel, “State-of-the-Art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
    [Crossref]
  6. M.-L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8(9), 1457–1462 (1991).
    [Crossref]
  7. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
    [Crossref] [PubMed]
  8. J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
    [Crossref]
  9. M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15(26), 18176–18189 (2007).
    [Crossref] [PubMed]
  10. A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D. X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38(5), 706–708 (2013).
    [Crossref] [PubMed]
  11. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  12. P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
    [Crossref]
  13. O. D. Herrera, K.-J. Kim, R. Voorakaranam, R. Himmelhuber, S. Wang, V. Demir, Q. Zhan, L. Li, R. A. Norwood, R. L. Nelson, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Silica/electro-optic polymer optical modulator with integrated antenna for microwave receiving,” J. Lightwave Technol. 32(20), 3861–3867 (2014).
    [Crossref]
  14. I. B. Akca, A. Dana, A. Aydinli, M. Rossetti, L. Li, A. Fiore, and N. Dagli, “Electro-optic and electro-absorption characterization of InAs quantum dot waveguides,” Opt. Express 16(5), 3439–3444 (2008).
    [Crossref] [PubMed]
  15. L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
    [Crossref]
  16. H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-Based photonic integrated circuits,” IEEE Photonics Technol. Lett. 11(11), 1420–1422 (1999).
    [Crossref]

2014 (1)

2013 (3)

2008 (2)

2007 (2)

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15(26), 18176–18189 (2007).
[Crossref] [PubMed]

2005 (2)

P. Cheben, I. Powell, S. Janz, and D.-X. Xu, “Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating,” Opt. Lett. 30(14), 1824–1826 (2005).
[Crossref] [PubMed]

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

2004 (1)

R. F. Wolffenbuttel, “State-of-the-Art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1999 (1)

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-Based photonic integrated circuits,” IEEE Photonics Technol. Lett. 11(11), 1420–1422 (1999).
[Crossref]

1992 (1)

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

1991 (1)

Akca, B. I.

Akca, I. B.

Alex, A.

Astolfi, M.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Aydinli, A.

Benech, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Bentini, G. G.

Bianconi, M.

Blaize, S.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Bock, P. J.

Borsetto, M.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Bukkems, H. G.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-Based photonic integrated circuits,” IEEE Photonics Technol. Lett. 11(11), 1420–1422 (1999).
[Crossref]

Calvo, M. L.

Cheben, P.

Chiarini, M.

Consonni, G.

Dagli, N.

Dana, A.

de Ridder, R. M.

Delâge, A.

Della Corte, F. G.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

Demir, V.

DeNicola, P.

Drexler, W.

Fedeli, J. M.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Fiore, A.

Florjanczyk, M.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Groen, F. H.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-Based photonic integrated circuits,” IEEE Photonics Technol. Lett. 11(11), 1420–1422 (1999).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Harlander, J.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Herben, C. G. P.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-Based photonic integrated circuits,” IEEE Photonics Technol. Lett. 11(11), 1420–1422 (1999).
[Crossref]

Herrera, O. D.

Himmelhuber, R.

Ikonen, E.

Iodice, M.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

Janz, S.

Jen, A. K.-Y.

Junttila, M.-L.

Kauppinen, J.

Kern, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Kim, K.-J.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Lapointe, J.

Le Coarer, E.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Leblond, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Lerondel, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Li, L.

Longone, R.

Luo, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Menin, A.

Meroni, A.

Moerman, I.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-Based photonic integrated circuits,” IEEE Photonics Technol. Lett. 11(11), 1420–1422 (1999).
[Crossref]

Montanari, G. B.

Morand, A.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Moretti, L.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Nelson, R. L.

Norwood, R. A.

Nubile, A.

Peyghambarian, N.

Pollnau, M.

Považay, B.

Powell, I.

Rendina, I.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

Reynolds, R. J.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Roesler, F. L.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Rossetti, M.

Royer, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Scarcelli, G.

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

Schmid, J. H.

Scott, A.

Smit, M. K.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-Based photonic integrated circuits,” IEEE Photonics Technol. Lett. 11(11), 1420–1422 (1999).
[Crossref]

Solheim, B.

Stefanon, I.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Sugliani, S.

Vachon, M.

Velasco, A. V.

Vergani, P.

Voorakaranam, R.

Wang, S.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “State-of-the-Art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Wörhoff, K.

Xu, D. X.

Xu, D.-X.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yun, S. H.

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

Zhan, Q.

Astrophys. J. (1)

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-Based photonic integrated circuits,” IEEE Photonics Technol. Lett. 11(11), 1420–1422 (1999).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

R. F. Wolffenbuttel, “State-of-the-Art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[Crossref]

J. Appl. Phys. (1)

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Nat. Photonics (2)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

N. V. Tkachenko, Optical Spectroscopy (Elsevier Science, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic of the ultrahigh-resolution FT spectrometer design. The input light is divided equally by an on-chip 3-dB coupler and sent towards two different paths; one has several S-shaped waveguides and the other has a straight waveguide. There are several electro-optically-controlled directional couplers on both arms that act as optical switches. They cross-couple the light when there is no voltage, and keep it on the same arm when there is a π phase difference due to electro-optic effect. The cross-coupled light from both arms will be combined at the beam combiner and sent to a photodetector (PD). Here Ls is the length of the straight sections; R is the radius of the curved waveguides on the S-shaped path.
Fig. 2
Fig. 2 a) The schematic of the electro-optically-controlled integrated- optics-based directional coupler. Here I1 is the input light, I2 is the transmitted light, I3 is the cross-coupled light, Lc is the electrode length, and d is the separation between coupler arms. b) Beam propagation method simulation of the optical mode. The blue outline shows the cross-sectional profile of the waveguide geometry. Relevant waveguide parameters are given. c) The amount of cross-coupling of the input light at different voltage values for different electrode lengths. The most optimum combination was obtained for an electrode length of 300 μm and an applied voltage value of V = 18 Volts. d, right) Voltage is OFF, the light will be cross-coupled to the other channel. d, left) Voltage is ON, V = 18 Volts, a π phase difference will be generated between coupler arms and the input light will stay in the same arm.
Fig. 3
Fig. 3 a) Schematic of the TMI-based beam combiner. Here I1, and I2, are the power on the input waveguides and ф1, and ф2 are the corresponding phases of the input beams, I3 is the power of the out-coupled beam and ф3 is the corresponding phase, L is the slab length, W is the slab width, and D is the separation between input waveguides. b) When I2 / I1 = 1, and the phase difference between two arms is Δф = 0, 96% of the incoming light will be coupled to the output waveguide, whereas c) when one arm has lower light intensity (i.e I2 / I1 = 0.5), it will be reduced by 2%. d) When both arms have the same power, a phase difference of π/6 will reduce the output power by 5%.

Tables (1)

Tables Icon

Table 1 The Effect of the Technological Tolerances on Electro-optic Switch Performance

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ L max =  λ 0 2 δλ× n g
Δn( V )=  1 2 n e 3 r 33 V t Γ
L c =  λ 0 2×Δn(V)

Metrics