M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]
[PubMed]
R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]
M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]
[PubMed]
M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol. 22, 025302 (2011).
[Crossref]
I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
A. A. Chtcherbakov, R. J. Kisch, J. D. Bull, and N. A. F. Jaeger, “Optical heterodyne method for amplitude and phase response mmeasurement for ultrawideband electrooptic modulators,” IEEE Photonics Technol. Lett. 19(1), 18–20 (2007).
[Crossref]
A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Technnol. 54(1), 240–246 (2006).
[Crossref]
S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[Crossref]
R. Williamson and C. Terpstra, “Precise free spectral range measurement of telecom etalons,” Proc. SPIE 5180, 274–282 (2004).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
H. Haitjema, P. H. J. Schellekens, and S. F. C. L. Wetzels, “Calibration of displacement sensors up to 300 μm with nanometre accuracy and direct traceability to a primary standard of length,” Metrologia 37(1), 25–33 (2000).
[Crossref]
P. J. Manson, “High precision free spectral range measurement using a phase modulated laser beam,” Rev. Sci. Instrum. 70(10), 3834–3839 (1999).
[Crossref]
C. Gamache, M. Têtu, C. Latrasse, N. Cyr, M. A. Duguay, and B. Villeneuve, “An optical frequency scale in exact multiples of 100 GHz for standardization of multifrequency communications,” IEEE Photonics Technol. Lett. 8(2), 290–292 (1996).
[Crossref]
N. Uehara and K. Ueda, “Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response functions,” Appl. Phys. B 61(1), 9–15 (1995).
[Crossref]
R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurement by optical heterodyne and pulse response techniques,” IEEE J. Lightwave Technol. 9(10), 1289–1294 (1991).
[Crossref]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
A. G. Adam, A. J. Merer, D. M. Steunenberg, M. C. L. Gerry, and I. Ozier, “A precise calibration system for high-resolution visible-laser spectroscopy,” Rev. Sci. Instrum. 60(6), 1003–1007 (1989).
[Crossref]
T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Techn. 37(8), 1217–1222 (1989).
[Crossref]
T. Okiyama, H. Nishimoto, I. Yokota, and T. Touge, “Evaluation of 4-Gbit/s optical fiber transmission distance with direct and external modulation,” IEEE J. Lightwave Technol. 6(11), 1686–1692 (1988).
[Crossref]
S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti: LiNbO3 external modulator,” IEEE J. Lightwave Technol. LT-5(10), 1505–1509 (1987).
[Crossref]
P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[Crossref]
G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
I. Kobayashi and M. Koyama, “Measurement of optical fiber transfer functions based upon the swept-frequency technique for baseband signals,” Trans. IECE Jpn. E59(4), 11–12 (1976).
T. Ito, S. Machida, T. Izawa, T. Miyashita, and A. Kawana, “Optical-transmission experiment at 400 Mb/s using a single-mode fibre,” Trans. IECE Jpn. E59(1), 19–20 (1976).
Z. Bay and G. G. Luther, “Locking a laser frequency to the time standard,” Appl. Phys. Lett. 13(9), 303–304 (1968).
[Crossref]
A. G. Adam, A. J. Merer, D. M. Steunenberg, M. C. L. Gerry, and I. Ozier, “A precise calibration system for high-resolution visible-laser spectroscopy,” Rev. Sci. Instrum. 60(6), 1003–1007 (1989).
[Crossref]
M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol. 22, 025302 (2011).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol. 22, 025302 (2011).
[Crossref]
Z. Bay and G. G. Luther, “Locking a laser frequency to the time standard,” Appl. Phys. Lett. 13(9), 303–304 (1968).
[Crossref]
M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]
[PubMed]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
A. A. Chtcherbakov, R. J. Kisch, J. D. Bull, and N. A. F. Jaeger, “Optical heterodyne method for amplitude and phase response mmeasurement for ultrawideband electrooptic modulators,” IEEE Photonics Technol. Lett. 19(1), 18–20 (2007).
[Crossref]
P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[Crossref]
P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[Crossref]
R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]
S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti: LiNbO3 external modulator,” IEEE J. Lightwave Technol. LT-5(10), 1505–1509 (1987).
[Crossref]
M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]
[PubMed]
A. A. Chtcherbakov, R. J. Kisch, J. D. Bull, and N. A. F. Jaeger, “Optical heterodyne method for amplitude and phase response mmeasurement for ultrawideband electrooptic modulators,” IEEE Photonics Technol. Lett. 19(1), 18–20 (2007).
[Crossref]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
C. Gamache, M. Têtu, C. Latrasse, N. Cyr, M. A. Duguay, and B. Villeneuve, “An optical frequency scale in exact multiples of 100 GHz for standardization of multifrequency communications,” IEEE Photonics Technol. Lett. 8(2), 290–292 (1996).
[Crossref]
D. Mandridis, I. Ozdur, M. Bagnell, and P. J. Delfyett, “Free spectral range measurement of a fiberized Fabry-Perot etalon with sub-Hz accuracy,” Opt. Express 18(11), 11264–11269 (2010).
[Crossref]
[PubMed]
I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[Crossref]
S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
C. Gamache, M. Têtu, C. Latrasse, N. Cyr, M. A. Duguay, and B. Villeneuve, “An optical frequency scale in exact multiples of 100 GHz for standardization of multifrequency communications,” IEEE Photonics Technol. Lett. 8(2), 290–292 (1996).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]
T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Techn. 37(8), 1217–1222 (1989).
[Crossref]
R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]
A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Technnol. 54(1), 240–246 (2006).
[Crossref]
R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
C. Gamache, M. Têtu, C. Latrasse, N. Cyr, M. A. Duguay, and B. Villeneuve, “An optical frequency scale in exact multiples of 100 GHz for standardization of multifrequency communications,” IEEE Photonics Technol. Lett. 8(2), 290–292 (1996).
[Crossref]
I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[Crossref]
S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[Crossref]
A. G. Adam, A. J. Merer, D. M. Steunenberg, M. C. L. Gerry, and I. Ozier, “A precise calibration system for high-resolution visible-laser spectroscopy,” Rev. Sci. Instrum. 60(6), 1003–1007 (1989).
[Crossref]
S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti: LiNbO3 external modulator,” IEEE J. Lightwave Technol. LT-5(10), 1505–1509 (1987).
[Crossref]
R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurement by optical heterodyne and pulse response techniques,” IEEE J. Lightwave Technol. 9(10), 1289–1294 (1991).
[Crossref]
H. Haitjema, P. H. J. Schellekens, and S. F. C. L. Wetzels, “Calibration of displacement sensors up to 300 μm with nanometre accuracy and direct traceability to a primary standard of length,” Metrologia 37(1), 25–33 (2000).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurement by optical heterodyne and pulse response techniques,” IEEE J. Lightwave Technol. 9(10), 1289–1294 (1991).
[Crossref]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol. 22, 025302 (2011).
[Crossref]
P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
T. Ito, S. Machida, T. Izawa, T. Miyashita, and A. Kawana, “Optical-transmission experiment at 400 Mb/s using a single-mode fibre,” Trans. IECE Jpn. E59(1), 19–20 (1976).
M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol. 22, 025302 (2011).
[Crossref]
T. Ito, S. Machida, T. Izawa, T. Miyashita, and A. Kawana, “Optical-transmission experiment at 400 Mb/s using a single-mode fibre,” Trans. IECE Jpn. E59(1), 19–20 (1976).
A. A. Chtcherbakov, R. J. Kisch, J. D. Bull, and N. A. F. Jaeger, “Optical heterodyne method for amplitude and phase response mmeasurement for ultrawideband electrooptic modulators,” IEEE Photonics Technol. Lett. 19(1), 18–20 (2007).
[Crossref]
A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Technnol. 54(1), 240–246 (2006).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurement by optical heterodyne and pulse response techniques,” IEEE J. Lightwave Technol. 9(10), 1289–1294 (1991).
[Crossref]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Techn. 37(8), 1217–1222 (1989).
[Crossref]
S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti: LiNbO3 external modulator,” IEEE J. Lightwave Technol. LT-5(10), 1505–1509 (1987).
[Crossref]
T. Ito, S. Machida, T. Izawa, T. Miyashita, and A. Kawana, “Optical-transmission experiment at 400 Mb/s using a single-mode fibre,” Trans. IECE Jpn. E59(1), 19–20 (1976).
M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol. 22, 025302 (2011).
[Crossref]
A. A. Chtcherbakov, R. J. Kisch, J. D. Bull, and N. A. F. Jaeger, “Optical heterodyne method for amplitude and phase response mmeasurement for ultrawideband electrooptic modulators,” IEEE Photonics Technol. Lett. 19(1), 18–20 (2007).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
I. Kobayashi and M. Koyama, “Measurement of optical fiber transfer functions based upon the swept-frequency technique for baseband signals,” Trans. IECE Jpn. E59(4), 11–12 (1976).
S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti: LiNbO3 external modulator,” IEEE J. Lightwave Technol. LT-5(10), 1505–1509 (1987).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
I. Kobayashi and M. Koyama, “Measurement of optical fiber transfer functions based upon the swept-frequency technique for baseband signals,” Trans. IECE Jpn. E59(4), 11–12 (1976).
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Technnol. 54(1), 240–246 (2006).
[Crossref]
C. Gamache, M. Têtu, C. Latrasse, N. Cyr, M. A. Duguay, and B. Villeneuve, “An optical frequency scale in exact multiples of 100 GHz for standardization of multifrequency communications,” IEEE Photonics Technol. Lett. 8(2), 290–292 (1996).
[Crossref]
G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]
Z. Bay and G. G. Luther, “Locking a laser frequency to the time standard,” Appl. Phys. Lett. 13(9), 303–304 (1968).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
T. Ito, S. Machida, T. Izawa, T. Miyashita, and A. Kawana, “Optical-transmission experiment at 400 Mb/s using a single-mode fibre,” Trans. IECE Jpn. E59(1), 19–20 (1976).
P. J. Manson, “High precision free spectral range measurement using a phase modulated laser beam,” Rev. Sci. Instrum. 70(10), 3834–3839 (1999).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti: LiNbO3 external modulator,” IEEE J. Lightwave Technol. LT-5(10), 1505–1509 (1987).
[Crossref]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]
M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]
[PubMed]
A. G. Adam, A. J. Merer, D. M. Steunenberg, M. C. L. Gerry, and I. Ozier, “A precise calibration system for high-resolution visible-laser spectroscopy,” Rev. Sci. Instrum. 60(6), 1003–1007 (1989).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]
[PubMed]
T. Ito, S. Machida, T. Izawa, T. Miyashita, and A. Kawana, “Optical-transmission experiment at 400 Mb/s using a single-mode fibre,” Trans. IECE Jpn. E59(1), 19–20 (1976).
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
T. Okiyama, H. Nishimoto, I. Yokota, and T. Touge, “Evaluation of 4-Gbit/s optical fiber transmission distance with direct and external modulation,” IEEE J. Lightwave Technol. 6(11), 1686–1692 (1988).
[Crossref]
T. Okiyama, H. Nishimoto, I. Yokota, and T. Touge, “Evaluation of 4-Gbit/s optical fiber transmission distance with direct and external modulation,” IEEE J. Lightwave Technol. 6(11), 1686–1692 (1988).
[Crossref]
D. Mandridis, I. Ozdur, M. Bagnell, and P. J. Delfyett, “Free spectral range measurement of a fiberized Fabry-Perot etalon with sub-Hz accuracy,” Opt. Express 18(11), 11264–11269 (2010).
[Crossref]
[PubMed]
I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[Crossref]
I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[Crossref]
S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[Crossref]
A. G. Adam, A. J. Merer, D. M. Steunenberg, M. C. L. Gerry, and I. Ozier, “A precise calibration system for high-resolution visible-laser spectroscopy,” Rev. Sci. Instrum. 60(6), 1003–1007 (1989).
[Crossref]
R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurement by optical heterodyne and pulse response techniques,” IEEE J. Lightwave Technol. 9(10), 1289–1294 (1991).
[Crossref]
M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]
[PubMed]
M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]
[PubMed]
M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]
[PubMed]
I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[Crossref]
S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
H. Haitjema, P. H. J. Schellekens, and S. F. C. L. Wetzels, “Calibration of displacement sensors up to 300 μm with nanometre accuracy and direct traceability to a primary standard of length,” Metrologia 37(1), 25–33 (2000).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]
[PubMed]
P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[Crossref]
A. G. Adam, A. J. Merer, D. M. Steunenberg, M. C. L. Gerry, and I. Ozier, “A precise calibration system for high-resolution visible-laser spectroscopy,” Rev. Sci. Instrum. 60(6), 1003–1007 (1989).
[Crossref]
S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti: LiNbO3 external modulator,” IEEE J. Lightwave Technol. LT-5(10), 1505–1509 (1987).
[Crossref]
T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Techn. 37(8), 1217–1222 (1989).
[Crossref]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
R. Williamson and C. Terpstra, “Precise free spectral range measurement of telecom etalons,” Proc. SPIE 5180, 274–282 (2004).
[Crossref]
C. Gamache, M. Têtu, C. Latrasse, N. Cyr, M. A. Duguay, and B. Villeneuve, “An optical frequency scale in exact multiples of 100 GHz for standardization of multifrequency communications,” IEEE Photonics Technol. Lett. 8(2), 290–292 (1996).
[Crossref]
T. Okiyama, H. Nishimoto, I. Yokota, and T. Touge, “Evaluation of 4-Gbit/s optical fiber transmission distance with direct and external modulation,” IEEE J. Lightwave Technol. 6(11), 1686–1692 (1988).
[Crossref]
R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]
N. Uehara and K. Ueda, “Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response functions,” Appl. Phys. B 61(1), 9–15 (1995).
[Crossref]
N. Uehara and K. Ueda, “Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response functions,” Appl. Phys. B 61(1), 9–15 (1995).
[Crossref]
S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti: LiNbO3 external modulator,” IEEE J. Lightwave Technol. LT-5(10), 1505–1509 (1987).
[Crossref]
C. Gamache, M. Têtu, C. Latrasse, N. Cyr, M. A. Duguay, and B. Villeneuve, “An optical frequency scale in exact multiples of 100 GHz for standardization of multifrequency communications,” IEEE Photonics Technol. Lett. 8(2), 290–292 (1996).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
H. Haitjema, P. H. J. Schellekens, and S. F. C. L. Wetzels, “Calibration of displacement sensors up to 300 μm with nanometre accuracy and direct traceability to a primary standard of length,” Metrologia 37(1), 25–33 (2000).
[Crossref]
R. Williamson and C. Terpstra, “Precise free spectral range measurement of telecom etalons,” Proc. SPIE 5180, 274–282 (2004).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol. 22, 025302 (2011).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
T. Okiyama, H. Nishimoto, I. Yokota, and T. Touge, “Evaluation of 4-Gbit/s optical fiber transmission distance with direct and external modulation,” IEEE J. Lightwave Technol. 6(11), 1686–1692 (1988).
[Crossref]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
N. Uehara and K. Ueda, “Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response functions,” Appl. Phys. B 61(1), 9–15 (1995).
[Crossref]
Z. Bay and G. G. Luther, “Locking a laser frequency to the time standard,” Appl. Phys. Lett. 13(9), 303–304 (1968).
[Crossref]
P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[Crossref]
I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[Crossref]
S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[Crossref]
S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti: LiNbO3 external modulator,” IEEE J. Lightwave Technol. LT-5(10), 1505–1509 (1987).
[Crossref]
T. Okiyama, H. Nishimoto, I. Yokota, and T. Touge, “Evaluation of 4-Gbit/s optical fiber transmission distance with direct and external modulation,” IEEE J. Lightwave Technol. 6(11), 1686–1692 (1988).
[Crossref]
R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurement by optical heterodyne and pulse response techniques,” IEEE J. Lightwave Technol. 9(10), 1289–1294 (1991).
[Crossref]
R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” IEEE J. Lightwave Technol. 8(9), 1363–1370 (1990).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron., 6(1), 69–82 (2000).
[Crossref]
C. Gamache, M. Têtu, C. Latrasse, N. Cyr, M. A. Duguay, and B. Villeneuve, “An optical frequency scale in exact multiples of 100 GHz for standardization of multifrequency communications,” IEEE Photonics Technol. Lett. 8(2), 290–292 (1996).
[Crossref]
A. A. Chtcherbakov, R. J. Kisch, J. D. Bull, and N. A. F. Jaeger, “Optical heterodyne method for amplitude and phase response mmeasurement for ultrawideband electrooptic modulators,” IEEE Photonics Technol. Lett. 19(1), 18–20 (2007).
[Crossref]
T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Techn. 37(8), 1217–1222 (1989).
[Crossref]
A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Technnol. 54(1), 240–246 (2006).
[Crossref]
M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol. 22, 025302 (2011).
[Crossref]
H. Haitjema, P. H. J. Schellekens, and S. F. C. L. Wetzels, “Calibration of displacement sensors up to 300 μm with nanometre accuracy and direct traceability to a primary standard of length,” Metrologia 37(1), 25–33 (2000).
[Crossref]
R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15(9), 5310–5317 (2007).
[Crossref]
[PubMed]
D. Mandridis, I. Ozdur, M. Bagnell, and P. J. Delfyett, “Free spectral range measurement of a fiberized Fabry-Perot etalon with sub-Hz accuracy,” Opt. Express 18(11), 11264–11269 (2010).
[Crossref]
[PubMed]
C. R. Locke, D. Stuart, E. N. Ivanov, and A. N. Luiten, “A simple technique for accurate and complete characterisation of a Fabry-Perot cavity,” Opt. Express 17(24), 21935–21943 (2009).
[Crossref]
[PubMed]
G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]
R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]
M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]
[PubMed]
M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]
[PubMed]
R. Williamson and C. Terpstra, “Precise free spectral range measurement of telecom etalons,” Proc. SPIE 5180, 274–282 (2004).
[Crossref]
P. J. Manson, “High precision free spectral range measurement using a phase modulated laser beam,” Rev. Sci. Instrum. 70(10), 3834–3839 (1999).
[Crossref]
A. G. Adam, A. J. Merer, D. M. Steunenberg, M. C. L. Gerry, and I. Ozier, “A precise calibration system for high-resolution visible-laser spectroscopy,” Rev. Sci. Instrum. 60(6), 1003–1007 (1989).
[Crossref]
I. Kobayashi and M. Koyama, “Measurement of optical fiber transfer functions based upon the swept-frequency technique for baseband signals,” Trans. IECE Jpn. E59(4), 11–12 (1976).
T. Ito, S. Machida, T. Izawa, T. Miyashita, and A. Kawana, “Optical-transmission experiment at 400 Mb/s using a single-mode fibre,” Trans. IECE Jpn. E59(1), 19–20 (1976).
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).