Abstract

An opto-electronic oscillator (OEO) scheme which operates at “chirp oscillation” mode and generates low-phase-noise, frequency-swept microwave is proposed and experimentally demonstrated. This frequency-swept OEO is achieved by embedding a rapidly frequency-scanning microwave filter in an opto-electronic cavity. The filter has fixed passband while its center frequency scans rapidly and periodically at cavity round-trip time, covering a large frequency range (~GHz). Experimentally, the generated frequency-swept microwave is linear frequency-modulated continuous wave (FMCW) which centers at 7 GHz with 1-GHz bandwidth. Its instantaneous frequency varies linearly from 6.5 GHz to 7.5 GHz, back and forth, in a period of 12.8 μs, resulting in a frequency scanning rate of ~156 MHz/μs. The single-side-band (SSB) noise of the generated FMCW is −104 dBc/Hz at 10 kHz offset frequency, which is much lower than that from a commercial electronic arbitrary waveform generator (E-AWG). Improvement as large as 23 dB is experimentally reported.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wideband tunable opto-electronic oscillator based on frequency translation

Zeev Tamir, Asher Meltzer, and Moshe Horowitz
Opt. Lett. 42(14) 2671-2674 (2017)

Fourier domain mode locked optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering

Tengfei Hao, Jian Tang, Wei Li, Ninghua Zhu, and Ming Li
OSA Continuum 1(2) 408-415 (2018)

An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter

Fan Jiang, Jia Haur Wong, Huy Quoc Lam, Junqiang Zhou, Sheel Aditya, Peng Huei Lim, Kenneth Eng Kian Lee, Perry Ping Shum, and Xinliang Zhang
Opt. Express 21(14) 16381-16389 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum. 79(5), 051301 (2008).
    [Crossref] [PubMed]
  2. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
    [Crossref]
  3. X. S. Yao, “Opto-electronic oscillators” in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, ed. (Cambridge University Press, 2002).
  4. D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in Proceedings of IEEE Conference on Frequency Control Symposium (IEEE, 2008), pp. 811–814.
    [Crossref]
  5. W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
    [Crossref]
  6. D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based opto-electronic oscillator,” in Proceedings of IEEE Conference on Microwave Symposium Digest (IEEE, 2003), pp. 2185–2187.
    [Crossref]
  7. A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
    [Crossref] [PubMed]
  8. W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
    [Crossref]
  9. H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Tunable DC-60 GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering,” J. Lightwave Technol. 33(13), 2707–2715 (2015).
    [Crossref]
  10. A. W. Rihaczek, Principles of High-Resolution Radar (Artech House, 1996).
  11. M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
    [Crossref] [PubMed]
  12. R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread-spectrum Communications (Prentice Hall, 1995).
  13. H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
    [Crossref]
  14. D. Gomez-Garcia, C. Leuschen, F. Rodriguez-Morales, J.-B. Yan, and P. Gogineni, “Linear chirp generator based on direct digital synthesis and frequency multiplication for airborne FMCW snow probing radar,” in Proceedings of IEEE Conference on Microwave Symposium (IEEE, 2014), pp. 1–4.
    [Crossref]
  15. Tektronix arbitrary waveform generators AWG7000 series datasheet, http://www.tek.com/datasheet/arbitrary- waveform-generators-7.
  16. E. C. Levy, M. Horowitz, and C. R. Menyuk, “Modeling optoelectronic oscillators,” J. Opt. Soc. Am. B 26(1), 148–159 (2009).
    [Crossref]
  17. K. Pann and Y. Shin, “A class of convolutional time-varying filters,” Geophysics 41(1), 28–43 (1976).
    [Crossref]
  18. Y. Dai, R. Wang, F. Yin, J. Dai, Y. Zhou, J. Li, and K. Xu, “Hybrid radio-intermediate-frequency oscillator with photonic-delay-matched frequency conversion pair,” Opt. Lett. 40(12), 2894–2897 (2015).
    [Crossref] [PubMed]
  19. Y. Dai, Q. Cen, L. Wang, Y. Zhou, F. Yin, J. Dai, J. Li, and K. Xu, “Low phase noise microwave extraction from femtosecond laser by frequency conversion pair and IF-domain processing,” Opt. Express 23(25), 31936–31944 (2015).
    [Crossref] [PubMed]
  20. A. Kanno and T. Kawanishi, “Broadband frequency-modulated continuous-wave signal generation by optical modulation technique,” J. Lightwave Technol. 32(20), 3566–3572 (2014).
    [Crossref]
  21. W. Xie, Z. Xia, Q. Zhou, H. Shi, Y. Dong, W. Hu, and W. Hu, “Photonic generation of low phase noise arbitrary chirped microwave waveforms with large time-bandwidth product,” Opt. Express 23(14), 18070–18079 (2015).
    [Crossref] [PubMed]
  22. D. Zhu and J. Yao, “Dual-chirp microwave waveform generation using a dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 27(13), 1410–1413 (2015).
    [Crossref]

2016 (1)

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

2015 (5)

2014 (1)

2012 (1)

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum. 79(5), 051301 (2008).
[Crossref] [PubMed]

2005 (2)

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[Crossref]

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

2000 (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

1976 (1)

K. Pann and Y. Shin, “A class of convolutional time-varying filters,” Geophysics 41(1), 28–43 (1976).
[Crossref]

Alexandre, C.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Bertero, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Blasche, G.

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[Crossref]

Boccacci, P.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Bouchand, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Cen, Q.

Chen, Z.

Conte, F.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Dai, J.

Dai, Y.

Datta, S.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Dong, Y.

Eliyahu, D.

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based opto-electronic oscillator,” in Proceedings of IEEE Conference on Microwave Symposium Digest (IEEE, 2003), pp. 2185–2187.
[Crossref]

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in Proceedings of IEEE Conference on Frequency Control Symposium (IEEE, 2008), pp. 811–814.
[Crossref]

Furutani, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Giunta, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Gogineni, P.

D. Gomez-Garcia, C. Leuschen, F. Rodriguez-Morales, J.-B. Yan, and P. Gogineni, “Linear chirp generator based on direct digital synthesis and frequency multiplication for airborne FMCW snow probing radar,” in Proceedings of IEEE Conference on Microwave Symposium (IEEE, 2014), pp. 1–4.
[Crossref]

Gomez-Garcia, D.

D. Gomez-Garcia, C. Leuschen, F. Rodriguez-Morales, J.-B. Yan, and P. Gogineni, “Linear chirp generator based on direct digital synthesis and frequency multiplication for airborne FMCW snow probing radar,” in Proceedings of IEEE Conference on Microwave Symposium (IEEE, 2014), pp. 1–4.
[Crossref]

Guo, P.

Hänsel, W.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Hartnett, J. G.

C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum. 79(5), 051301 (2008).
[Crossref] [PubMed]

Holzwarth, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Horowitz, M.

Hu, W.

Ilchenko, V. S.

Ivanov, E. N.

C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum. 79(5), 051301 (2008).
[Crossref] [PubMed]

Joshi, A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Kang, B.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Kanno, A.

Kawanishi, T.

Kwon, H.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Le Coq, Y.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Leuschen, C.

D. Gomez-Garcia, C. Leuschen, F. Rodriguez-Morales, J.-B. Yan, and P. Gogineni, “Linear chirp generator based on direct digital synthesis and frequency multiplication for airborne FMCW snow probing radar,” in Proceedings of IEEE Conference on Microwave Symposium (IEEE, 2014), pp. 1–4.
[Crossref]

Levy, E. C.

Lezius, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Li, J.

Li, W.

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

Liang, W.

Locke, C. R.

C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum. 79(5), 051301 (2008).
[Crossref] [PubMed]

Lours, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Maleki, L.

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in Proceedings of IEEE Conference on Frequency Control Symposium (IEEE, 2008), pp. 811–814.
[Crossref]

D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based opto-electronic oscillator,” in Proceedings of IEEE Conference on Microwave Symposium Digest (IEEE, 2003), pp. 2185–2187.
[Crossref]

Matsko, A. B.

Menyuk, C. R.

Miyakawa, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Nicolodi, D.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Orikasa, K.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Pann, K.

K. Pann and Y. Shin, “A class of convolutional time-varying filters,” Geophysics 41(1), 28–43 (1976).
[Crossref]

Peng, H.

Rodriguez-Morales, F.

D. Gomez-Garcia, C. Leuschen, F. Rodriguez-Morales, J.-B. Yan, and P. Gogineni, “Linear chirp generator based on direct digital synthesis and frequency multiplication for airborne FMCW snow probing radar,” in Proceedings of IEEE Conference on Microwave Symposium (IEEE, 2014), pp. 1–4.
[Crossref]

Santarelli, G.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Savchenkov, A. A.

Seidel, D.

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in Proceedings of IEEE Conference on Frequency Control Symposium (IEEE, 2008), pp. 811–814.
[Crossref]

Shi, H.

Shin, Y.

K. Pann and Y. Shin, “A class of convolutional time-varying filters,” Geophysics 41(1), 28–43 (1976).
[Crossref]

Stanwix, P. L.

C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum. 79(5), 051301 (2008).
[Crossref] [PubMed]

Sun, T.

Tobar, M. E.

C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum. 79(5), 051301 (2008).
[Crossref] [PubMed]

Tremblin, P.-A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Wang, L.

Wang, R.

Xia, Z.

Xie, W.

Xie, X.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Tunable DC-60 GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering,” J. Lightwave Technol. 33(13), 2707–2715 (2015).
[Crossref]

Xu, K.

Yan, J.-B.

D. Gomez-Garcia, C. Leuschen, F. Rodriguez-Morales, J.-B. Yan, and P. Gogineni, “Linear chirp generator based on direct digital synthesis and frequency multiplication for airborne FMCW snow probing radar,” in Proceedings of IEEE Conference on Microwave Symposium (IEEE, 2014), pp. 1–4.
[Crossref]

Yao, J.

D. Zhu and J. Yao, “Dual-chirp microwave waveform generation using a dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 27(13), 1410–1413 (2015).
[Crossref]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

Yin, F.

Zhang, C.

Zhou, Q.

Zhou, W.

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[Crossref]

Zhou, Y.

Zhu, D.

D. Zhu and J. Yao, “Dual-chirp microwave waveform generation using a dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 27(13), 1410–1413 (2015).
[Crossref]

Zhu, L.

Zhu, X.

Geophysics (1)

K. Pann and Y. Shin, “A class of convolutional time-varying filters,” Geophysics 41(1), 28–43 (1976).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Zhu and J. Yao, “Dual-chirp microwave waveform generation using a dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 27(13), 1410–1413 (2015).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (2)

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[Crossref]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47; advance online publication (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum. 79(5), 051301 (2008).
[Crossref] [PubMed]

Other (7)

X. S. Yao, “Opto-electronic oscillators” in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, ed. (Cambridge University Press, 2002).

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in Proceedings of IEEE Conference on Frequency Control Symposium (IEEE, 2008), pp. 811–814.
[Crossref]

D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based opto-electronic oscillator,” in Proceedings of IEEE Conference on Microwave Symposium Digest (IEEE, 2003), pp. 2185–2187.
[Crossref]

A. W. Rihaczek, Principles of High-Resolution Radar (Artech House, 1996).

R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread-spectrum Communications (Prentice Hall, 1995).

D. Gomez-Garcia, C. Leuschen, F. Rodriguez-Morales, J.-B. Yan, and P. Gogineni, “Linear chirp generator based on direct digital synthesis and frequency multiplication for airborne FMCW snow probing radar,” in Proceedings of IEEE Conference on Microwave Symposium (IEEE, 2014), pp. 1–4.
[Crossref]

Tektronix arbitrary waveform generators AWG7000 series datasheet, http://www.tek.com/datasheet/arbitrary- waveform-generators-7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 A comparison between (a) single-frequency OEO and (b) the proposed frequency-scanning OEO.
Fig. 2
Fig. 2 A numerical example of the proposed frequency-scanning OEO. As a comparison, traditional OEO is also simulated. (a) and (c) Parts of temporal waveform of frequency-scanning OEO. (b) Instantaneous frequencies of the frequency-scanning OEO (in pink) and traditional OEO (in blue) and temporal waveform of the frequency-scanning OEO in two periods (in red). (d) Power spectrums. (e) Single-frequency-tone SSB noises of frequency-scanning OEO under different Bscan.
Fig. 3
Fig. 3 (a) The experiment setup; (b) Equivalent frequency-scanning BPF.
Fig. 4
Fig. 4 Experiment results of proposed frequency-scanning OEO. (a) Parts of temporal waveforms. (b) Instantaneous frequencies (sig-FMCW in pink and LO-FMCW in green) and temporal waveforms in two periods (sig-FMCW in red and LO-FMCW in blue). (c) Power spectrums in 500-kHz span. (d) Power spectrums in 2-GHz span. The inserted graphic is the power spectrums of the sig-FMCWs with 500-MHz bandwidth in different center frequencies (e) SSB noises.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a OUT ( t ) = { [ a IN ( t ) e i Φ ( t ) ] h fix ( t ) } e i Φ ( t )
1 2 π d Φ d t = B scan 2 2 | t | τ C B scan τ C 2 t < τ C 2
a OUT ( t ) = G LNA R P D I P D Z P D J 1 ( π | a IN ( t ) | V π ) e i arg [ a IN ( t ) ]

Metrics