Abstract

In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique

Yiping Wang, Ming Wang, Wei Xia, and Xiaoqi Ni
Opt. Express 24(16) 17960-17967 (2016)

Optical length-change measurement based on an incoherent single-bandpass microwave photonic filter with high resolution

Ye Deng, Ming Li, Ningbo Huang, Hui Wang, and Ninghua Zhu
Photon. Res. 2(4) B35-B39 (2014)

Sensitivity enhanced fiber sensor based on a fiber ring microwave photonic filter with the Vernier effect

Zuowei Xu, Xuewen Shu, and Hongyan Fu
Opt. Express 25(18) 21559-21566 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  2. R. Waters and M. Aklufi, “Micromachined Fabry-Perot interferometer for motion detection,” Appl. Phys. Lett. 81(18), 3320–3322 (2002).
    [Crossref]
  3. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity based optical fiber sensors,” J. Lightwave Technol. 19(10), 1495–1501 (2001).
    [Crossref]
  4. Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber optic fabry perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
    [Crossref]
  5. H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
    [Crossref]
  6. X. Ni, M. Wang, X. Chen, and Y. Ge, H. R, “An optical fibre MEMS pressure sensor using dual-wavelength interrogation,” Meas. Sci. Technol. 17(9), 2401–2404 (2006).
    [Crossref]
  7. Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
    [Crossref]
  8. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  9. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  10. J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
    [Crossref]
  11. R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
    [Crossref] [PubMed]
  12. X. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Lu, “Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement,” Opt. Lett. 33(5), 482–484 (2008).
    [Crossref] [PubMed]
  13. A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
    [Crossref] [PubMed]
  14. Y. Wang, J. Zhang, O. Coutinho, and J. Yao, “Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform,” Opt. Lett. 40(21), 4923–4926 (2015).
    [Crossref] [PubMed]
  15. Y. Wang, M. Wang, W. Xia, and X. Ni, “High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique,” Opt. Express 24(16), 17960–17967 (2016).
    [Crossref] [PubMed]
  16. J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach–Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [Crossref]
  17. Y. Ge, M. Wang, X. Chen, and H. Rong, “An optical MEMS pressure sensor based on a phase demodulation method,” Sensor. Actuat. A-Phys 143(2), 224–229 (2008).
  18. M. Li, M. Wang, and H. Li, “Optical MEMS pressure sensor based on Fabry-Perot interferometry,” Opt. Express 14(4), 1497–1504 (2006).
    [Crossref] [PubMed]
  19. L. Wang, Y. Wang, and X. Zhang, “Embedded metallic focus grating for silicon nitride waveguide with enhanced coupling and directive radiation,” Opt. Express 20(16), 17509–17521 (2012).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (1)

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber optic fabry perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

2013 (2)

2012 (1)

2009 (1)

2008 (3)

X. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Lu, “Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement,” Opt. Lett. 33(5), 482–484 (2008).
[Crossref] [PubMed]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

Y. Ge, M. Wang, X. Chen, and H. Rong, “An optical MEMS pressure sensor based on a phase demodulation method,” Sensor. Actuat. A-Phys 143(2), 224–229 (2008).

2006 (5)

2003 (1)

2002 (1)

R. Waters and M. Aklufi, “Micromachined Fabry-Perot interferometer for motion detection,” Appl. Phys. Lett. 81(18), 3320–3322 (2002).
[Crossref]

2001 (1)

1995 (1)

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Aklufi, M.

R. Waters and M. Aklufi, “Micromachined Fabry-Perot interferometer for motion detection,” Appl. Phys. Lett. 81(18), 3320–3322 (2002).
[Crossref]

Andres, M. V.

Barrera, D.

Capmany, J.

Cascon, J.

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Chan, E. H. W.

Chen, X.

Y. Ge, M. Wang, X. Chen, and H. Rong, “An optical MEMS pressure sensor based on a phase demodulation method,” Sensor. Actuat. A-Phys 143(2), 224–229 (2008).

X. Ni, M. Wang, X. Chen, and Y. Ge, H. R, “An optical fibre MEMS pressure sensor using dual-wavelength interrogation,” Meas. Sci. Technol. 17(9), 2401–2404 (2006).
[Crossref]

Coutinho, O.

Cruz, J. L.

Deng, J.

Diez, A.

Dong, X.

Fu, H. Y.

Ge, Y.

Y. Ge, M. Wang, X. Chen, and H. Rong, “An optical MEMS pressure sensor based on a phase demodulation method,” Sensor. Actuat. A-Phys 143(2), 224–229 (2008).

X. Ni, M. Wang, X. Chen, and Y. Ge, H. R, “An optical fibre MEMS pressure sensor using dual-wavelength interrogation,” Meas. Sci. Technol. 17(9), 2401–2404 (2006).
[Crossref]

Jiang, Y.

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

Li, H.

Li, M.

Lu, C.

Lv, R.

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber optic fabry perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Marti, J.

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Martin, J. L.

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

May, R. G.

Minasian, R. A.

Mora, J.

Ni, X.

Y. Wang, M. Wang, W. Xia, and X. Ni, “High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique,” Opt. Express 24(16), 17960–17967 (2016).
[Crossref] [PubMed]

X. Ni, M. Wang, X. Chen, and Y. Ge, H. R, “An optical fibre MEMS pressure sensor using dual-wavelength interrogation,” Meas. Sci. Technol. 17(9), 2401–2404 (2006).
[Crossref]

Ortega, B.

Pastor, D.

Pickrell, G.

Rao, Y.

Y. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Ricchiuti, A. L.

Rong, H.

Y. Ge, M. Wang, X. Chen, and H. Rong, “An optical MEMS pressure sensor based on a phase demodulation method,” Sensor. Actuat. A-Phys 143(2), 224–229 (2008).

Sales, S.

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
[Crossref] [PubMed]

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Shao, L. Y.

Tam, H. Y.

Thevenaz, L.

Wang, A.

Wang, D.

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber optic fabry perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Wang, J.

Wang, L.

Wang, M.

Y. Wang, M. Wang, W. Xia, and X. Ni, “High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique,” Opt. Express 24(16), 17960–17967 (2016).
[Crossref] [PubMed]

Y. Ge, M. Wang, X. Chen, and H. Rong, “An optical MEMS pressure sensor based on a phase demodulation method,” Sensor. Actuat. A-Phys 143(2), 224–229 (2008).

X. Ni, M. Wang, X. Chen, and Y. Ge, H. R, “An optical fibre MEMS pressure sensor using dual-wavelength interrogation,” Meas. Sci. Technol. 17(9), 2401–2404 (2006).
[Crossref]

M. Li, M. Wang, and H. Li, “Optical MEMS pressure sensor based on Fabry-Perot interferometry,” Opt. Express 14(4), 1497–1504 (2006).
[Crossref] [PubMed]

Wang, Q.

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber optic fabry perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Wang, Y.

Wang, Z.

Waters, R.

R. Waters and M. Aklufi, “Micromachined Fabry-Perot interferometer for motion detection,” Appl. Phys. Lett. 81(18), 3320–3322 (2002).
[Crossref]

Xia, W.

Xiao, H.

Yao, J.

Yi, X.

Zhang, J.

Zhang, X.

Zhao, W.

Zhao, Y.

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber optic fabry perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Appl. Phys. Lett. (1)

R. Waters and M. Aklufi, “Micromachined Fabry-Perot interferometer for motion detection,” Appl. Phys. Lett. 81(18), 3320–3322 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber optic fabry perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

J. Lightwave Technol. (6)

Meas. Sci. Technol. (1)

X. Ni, M. Wang, X. Chen, and Y. Ge, H. R, “An optical fibre MEMS pressure sensor using dual-wavelength interrogation,” Meas. Sci. Technol. 17(9), 2401–2404 (2006).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

Y. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Lett. (2)

Sensor. Actuat. A-Phys (1)

Y. Ge, M. Wang, X. Chen, and H. Rong, “An optical MEMS pressure sensor based on a phase demodulation method,” Sensor. Actuat. A-Phys 143(2), 224–229 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the proposed pressure sensing system.
Fig. 2
Fig. 2 (a) Schematic diagram of the optical MEMS pressure sensor; (b) Photograph of the packaged sensor.
Fig. 3
Fig. 3 The measured reflected spectrum of the EFPI at point A in the experimental setup.
Fig. 4
Fig. 4 The measured frequency response of the MPF without pressure applied.
Fig. 5
Fig. 5 The measured frequency responses of the MPF when different pressures are applied.
Fig. 6
Fig. 6 The central frequency shift of the MPF as a function of applied pressure.
Fig. 7
Fig. 7 Central frequency change with difference pressure during the stability test: (a) 0 MPa; (b) 4 MPa.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = cos [ ω c t + Δ φ ( t ) ] = E ( t ) = n = 1 1 J n ( m p V ) cos [ ( ω c + n ω m ) t + n π 2 ]
E ( t ) = n = 1 1 J n ( m p V ) cos [ ( ω c + n / ω m ) t + n π 2 + θ ( ω c + n ω m ) ]
θ ( ω ) = θ ( ω c ) + τ g ( ω c ) ( ω ω c ) + 1 2 β L ( ω ω c ) 2 + 1 3 β χ ( ω ω c ) 3
H R F ( ω m ) = T ( ω ) [ H ( ω ) H ( ω + ω m ) H ( ω ) H ( ω ω m ) ] d ω
f c = 1 Δ T = 1 D Δ λ
Δ λ = λ 2 [ 2 n ( L 0 + K Δ P ) ]
Δ λ = λ 2 / [ 2 n ( L 0 + K Δ P ) ]
Δ f = 1 D Δ λ 1 D Δ λ = 2 n D λ 2 K Δ P

Metrics