Abstract

A femtogram scale nanobeam optomechanical crystal (OMC) resonator operating in water is designed and demonstrated. After immersing the device in water, the mechanical Q-factor reduces to 6.6 from 2285 in air. The thermomechanical motion of the highly damped mechanical resonance in water can be resolved using the sensitive cavity optomechanical readout. The mechanical frequency is shifted to 5.251 GHz from 5.3 GHz in air due to the added motional inertia. From the thermomechanical noise spectrum of the mechanical resonance, a noise floor of 9.33am/Hz is achieved in water. Through 2D finite element method (FEM) simulations, the acoustic dissipation dominates the low mechanical Q-factor of the device during the interaction between the mechanical resonance and surrounding water. The mass sensitivity of the present device is estimated to be 1.33ag/Hz in water.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a femtogram scale double-slot photonic crystal optomechanical cavity

He Zhang, Yong Zhang, Ge Gao, Xiangjie Zhao, Yi Wang, Qingzhong Huang, Jinzhong Yu, and Jinsong Xia
Opt. Express 23(18) 23167-23176 (2015)

Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison

Jiangjun Zheng, Xiankai Sun, Ying Li, Menno Poot, Ali Dadgar, Norman Nan Shi, Wolfram H. P. Pernice, Hong X. Tang, and Chee Wei Wong
Opt. Express 20(24) 26486-26498 (2012)

GHz optomechanical resonators with high mechanical Q factor in air

Xiankai Sun, King Y. Fong, Chi Xiong, Wolfram H. P. Pernice, and Hong X. Tang
Opt. Express 19(22) 22316-22321 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
    [Crossref] [PubMed]
  2. H. Y. Chiu, P. Hung, H. W. Ch. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
    [Crossref] [PubMed]
  3. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
    [Crossref] [PubMed]
  4. J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
    [Crossref] [PubMed]
  5. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
    [Crossref] [PubMed]
  6. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
    [Crossref] [PubMed]
  7. K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682–2689 (2004).
    [Crossref]
  8. K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3(9), 533–537 (2008).
    [Crossref] [PubMed]
  9. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8(11), 3735–3738 (2008).
    [Crossref] [PubMed]
  10. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7(5), 301–304 (2012).
    [Crossref] [PubMed]
  11. W. Hiebert, “Mass sensing: Devices reach single-proton limit,” Nat. Nanotechnol. 7(5), 278–280 (2012).
    [Crossref] [PubMed]
  12. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
    [Crossref] [PubMed]
  13. J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
    [Crossref] [PubMed]
  14. K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, “Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles,” Phys. Rep. 503(4–5), 115–163 (2011).
    [Crossref]
  15. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
    [Crossref] [PubMed]
  16. K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
    [Crossref]
  17. S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
    [Crossref] [PubMed]
  18. E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
    [Crossref] [PubMed]
  19. K. Y. Fong, M. Poot, and H. X. Tang, “Nano-optomechanical resonators in microfluidics,” Nano Lett. 15(9), 6116–6120 (2015).
    [Crossref] [PubMed]
  20. E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
    [Crossref]
  21. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
    [Crossref] [PubMed]
  22. A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
    [Crossref] [PubMed]
  23. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
    [Crossref] [PubMed]
  24. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
    [Crossref]
  25. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  26. C. Hedlund, H. O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962 (1994).
    [Crossref]
  27. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  28. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref] [PubMed]
  29. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677 (1990).
    [Crossref]
  30. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
    [Crossref]
  31. A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
    [Crossref]
  32. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
    [Crossref] [PubMed]
  33. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
    [Crossref] [PubMed]
  34. J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope,” J. Appl. Phys. 84(1), 64–76 (1998).
    [Crossref]
  35. M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
    [Crossref]
  36. J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8 °C to 150 °C,” J. Phys. Chem. Ref. Data 7(3), 941 (1978).
    [Crossref]
  37. A. H. Smith and A. W. Lawson, “The velocity of sound in water as a function of temperature and pressure,” J. Chem. Phys. 22(3), 351 (1954).
    [Crossref]
  38. B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
    [Crossref]
  39. S. S. Verbridge, L. M. Bellan, J. M. Parpia, and H. G. Craighead, “Optically driven resonance of nanoscale flexural oscillators in liquid,” Nano Lett. 6(9), 2109–2114 (2006).
    [Crossref] [PubMed]
  40. I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
    [Crossref] [PubMed]

2015 (2)

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

K. Y. Fong, M. Poot, and H. X. Tang, “Nano-optomechanical resonators in microfluidics,” Nano Lett. 15(9), 6116–6120 (2015).
[Crossref] [PubMed]

2014 (1)

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

2013 (3)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

2012 (7)

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7(5), 301–304 (2012).
[Crossref] [PubMed]

W. Hiebert, “Mass sensing: Devices reach single-proton limit,” Nat. Nanotechnol. 7(5), 278–280 (2012).
[Crossref] [PubMed]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

2011 (4)

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, “Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles,” Phys. Rep. 503(4–5), 115–163 (2011).
[Crossref]

2010 (2)

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

2009 (2)

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

2008 (4)

H. Y. Chiu, P. Hung, H. W. Ch. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3(9), 533–537 (2008).
[Crossref] [PubMed]

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8(11), 3735–3738 (2008).
[Crossref] [PubMed]

M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
[Crossref]

2007 (3)

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[Crossref] [PubMed]

2006 (2)

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

S. S. Verbridge, L. M. Bellan, J. M. Parpia, and H. G. Craighead, “Optically driven resonance of nanoscale flexural oscillators in liquid,” Nano Lett. 6(9), 2109–2114 (2006).
[Crossref] [PubMed]

2004 (2)

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682–2689 (2004).
[Crossref]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref] [PubMed]

2001 (1)

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
[Crossref]

1998 (1)

J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope,” J. Appl. Phys. 84(1), 64–76 (1998).
[Crossref]

1994 (1)

C. Hedlund, H. O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962 (1994).
[Crossref]

1990 (1)

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677 (1990).
[Crossref]

1978 (1)

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8 °C to 150 °C,” J. Phys. Chem. Ref. Data 7(3), 941 (1978).
[Crossref]

1973 (1)

1954 (1)

A. H. Smith and A. W. Lawson, “The velocity of sound in water as a function of temperature and pressure,” J. Chem. Phys. 22(3), 351 (1954).
[Crossref]

Aguasca, A.

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8(11), 3735–3738 (2008).
[Crossref] [PubMed]

Aldridge, J. S.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

Alegre, T. P. M.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

Almeida, V. R.

Andreucci, P.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

Arlett, J. L.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

Atsumi, H.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Babcock, K.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

Bachtold, A.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7(5), 301–304 (2012).
[Crossref] [PubMed]

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8(11), 3735–3738 (2008).
[Crossref] [PubMed]

Bahl, G.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Baker, C.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Bargatin, I.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

Barwich, V.

M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
[Crossref]

Basarir, O.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

Batt, C.

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
[Crossref]

Belcher, A. M.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Bellan, L. M.

S. S. Verbridge, L. M. Bellan, J. M. Parpia, and H. G. Craighead, “Optically driven resonance of nanoscale flexural oscillators in liquid,” Nano Lett. 6(9), 2109–2114 (2006).
[Crossref] [PubMed]

Berg, S.

C. Hedlund, H. O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962 (1994).
[Crossref]

Bhatia, S. N.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Blom, H. O.

C. Hedlund, H. O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962 (1994).
[Crossref]

Bockrath, M.

H. Y. Chiu, P. Hung, H. W. Ch. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

Bramhavar, S.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

Braun, T.

M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
[Crossref]

Brianceau, P.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

Burg, T. P.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

Callegari, C.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Campagnolo, C.

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
[Crossref]

Carlson, G.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

Carmon, T.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Castellanos-Beltran, M. A.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Ceballos, G.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7(5), 301–304 (2012).
[Crossref] [PubMed]

Cermak, N.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Chan, J.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Chaste, J.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7(5), 301–304 (2012).
[Crossref] [PubMed]

Chiu, H. Y.

H. Y. Chiu, P. Hung, H. W. Ch. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

Christine, K. S.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Colinet, E.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

Craighead, H. G.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[Crossref] [PubMed]

S. S. Verbridge, L. M. Bellan, J. M. Parpia, and H. G. Craighead, “Optically driven resonance of nanoscale flexural oscillators in liquid,” Nano Lett. 6(9), 2109–2114 (2006).
[Crossref] [PubMed]

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
[Crossref]

Czaplewski, D.

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
[Crossref]

Ding, L.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Donner, T.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Ducci, S.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Duraffourg, L.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

Dykman, M. I.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Eichenfield, M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Eichler, A.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7(5), 301–304 (2012).
[Crossref] [PubMed]

Ekinci, K. L.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682–2689 (2004).
[Crossref]

Eom, K.

K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, “Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles,” Phys. Rep. 503(4–5), 115–163 (2011).
[Crossref]

Esplandiu, M. J.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Fan, X.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Favero, I.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Feng, X. L.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

Fong, K. Y.

K. Y. Fong, M. Poot, and H. X. Tang, “Nano-optomechanical resonators in microfluidics,” Nano Lett. 15(9), 6116–6120 (2015).
[Crossref] [PubMed]

Foster, J. S.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677 (1990).
[Crossref]

Garcia-Sanchez, D.

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8(11), 3735–3738 (2008).
[Crossref] [PubMed]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Gerber, C.

M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
[Crossref]

Ghatkesar, M. K.

M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
[Crossref]

Gil-Santos, E.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Godin, M.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

Gomez, C.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Güttinger, J.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Hale, G. M.

Harlow, J. W.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Hease, W.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Hedlund, C.

C. Hedlund, H. O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962 (1994).
[Crossref]

Hegner, M.

M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
[Crossref]

Hentz, S.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

Hiebert, W.

W. Hiebert, “Mass sensing: Devices reach single-proton limit,” Nat. Nanotechnol. 7(5), 278–280 (2012).
[Crossref] [PubMed]

Hill, J. T.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

Hung, P.

H. Y. Chiu, P. Hung, H. W. Ch. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

Ilic, B.

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
[Crossref]

Jensen, K.

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3(9), 533–537 (2008).
[Crossref] [PubMed]

Kestin, J.

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8 °C to 150 °C,” J. Phys. Chem. Ref. Data 7(3), 941 (1978).
[Crossref]

Kim, K.

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3(9), 533–537 (2008).
[Crossref] [PubMed]

Kim, K. H.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Kippenberg, T. J.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

Knudsen, S. M.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

Krause, A.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Kwon, T.

K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, “Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles,” Phys. Rep. 503(4–5), 115–163 (2011).
[Crossref]

Lang, H. P.

M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
[Crossref]

Lassagne, B.

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8(11), 3735–3738 (2008).
[Crossref] [PubMed]

Lawson, A. W.

A. H. Smith and A. W. Lawson, “The velocity of sound in water as a function of temperature and pressure,” J. Chem. Phys. 22(3), 351 (1954).
[Crossref]

Lee, J.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Lemaitre, A.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Lemaître, A.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Leo, G.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Lipson, M.

Liu, D. E.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Liu, J.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Loncar, M.

Manalis, S. R.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

Marcoux, C.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

Meenehan, S.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

Moser, J.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7(5), 301–304 (2012).
[Crossref] [PubMed]

Myers, E. B.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

Neuzil, P.

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
[Crossref]

Nguyen, D. T.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Olcum, S.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Painter, O.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Park, H. S.

K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, “Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles,” Phys. Rep. 503(4–5), 115–163 (2011).
[Crossref]

Parpia, J. M.

S. S. Verbridge, L. M. Bellan, J. M. Parpia, and H. G. Craighead, “Optically driven resonance of nanoscale flexural oscillators in liquid,” Nano Lett. 6(9), 2109–2114 (2006).
[Crossref] [PubMed]

Payer, K. R.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Poot, M.

K. Y. Fong, M. Poot, and H. X. Tang, “Nano-optomechanical resonators in microfluidics,” Nano Lett. 15(9), 6116–6120 (2015).
[Crossref] [PubMed]

Postma, H. W. Ch.

H. Y. Chiu, P. Hung, H. W. Ch. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

Quan, Q.

Querry, M. R.

Ramseyer, J.

M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
[Crossref]

Roukes, M. L.

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682–2689 (2004).
[Crossref]

Rurali, R.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7(5), 301–304 (2012).
[Crossref] [PubMed]

Sader, J. E.

J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope,” J. Appl. Phys. 84(1), 64–76 (1998).
[Crossref]

Safavi-Naeini, A. H.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677 (1990).
[Crossref]

Senellart, P.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Sengers, J. M. H. L.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677 (1990).
[Crossref]

Shen, W.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

Smith, A. H.

A. H. Smith and A. W. Lawson, “The velocity of sound in water as a function of temperature and pressure,” J. Chem. Phys. 22(3), 351 (1954).
[Crossref]

Sokolov, M.

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8 °C to 150 °C,” J. Phys. Chem. Ref. Data 7(3), 941 (1978).
[Crossref]

Straub, J.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677 (1990).
[Crossref]

Tang, H. X.

K. Y. Fong, M. Poot, and H. X. Tang, “Nano-optomechanical resonators in microfluidics,” Nano Lett. 15(9), 6116–6120 (2015).
[Crossref] [PubMed]

Teufel, J. D.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Tomes, M.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Vahala, K. J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

Verbridge, S. S.

S. S. Verbridge, L. M. Bellan, J. M. Parpia, and H. G. Craighead, “Optically driven resonance of nanoscale flexural oscillators in liquid,” Nano Lett. 6(9), 2109–2114 (2006).
[Crossref] [PubMed]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Waggoner, P. S.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[Crossref] [PubMed]

Wakeham, W. A.

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8 °C to 150 °C,” J. Phys. Chem. Ref. Data 7(3), 941 (1978).
[Crossref]

Wasserman, S. C.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

Yang, Y. T.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682–2689 (2004).
[Crossref]

Yoon, D. S.

K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, “Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles,” Phys. Rep. 503(4–5), 115–163 (2011).
[Crossref]

Zalalutdinov, M.

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
[Crossref]

Zettl, A.

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3(9), 533–537 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

M. K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92(4), 043106 (2008).
[Crossref]

J. Appl. Phys. (2)

J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope,” J. Appl. Phys. 84(1), 64–76 (1998).
[Crossref]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682–2689 (2004).
[Crossref]

J. Chem. Phys. (1)

A. H. Smith and A. W. Lawson, “The velocity of sound in water as a function of temperature and pressure,” J. Chem. Phys. 22(3), 351 (1954).
[Crossref]

J. Phys. Chem. Ref. Data (2)

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8 °C to 150 °C,” J. Phys. Chem. Ref. Data 7(3), 941 (1978).
[Crossref]

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677 (1990).
[Crossref]

J. Vac. Sci. Technol. A (1)

C. Hedlund, H. O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962 (1994).
[Crossref]

J. Vac. Sci. Technol. B (1)

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators,” J. Vac. Sci. Technol. B 19(6), 2825 (2001).
[Crossref]

Lab Chip (1)

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[Crossref] [PubMed]

Light Sci. Appl. (1)

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Nano Lett. (7)

K. Y. Fong, M. Poot, and H. X. Tang, “Nano-optomechanical resonators in microfluidics,” Nano Lett. 15(9), 6116–6120 (2015).
[Crossref] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8(11), 3735–3738 (2008).
[Crossref] [PubMed]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

H. Y. Chiu, P. Hung, H. W. Ch. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

S. S. Verbridge, L. M. Bellan, J. M. Parpia, and H. G. Craighead, “Optically driven resonance of nanoscale flexural oscillators in liquid,” Nano Lett. 6(9), 2109–2114 (2006).
[Crossref] [PubMed]

I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, “Large-scale integration of nanoelectromechanical systems for gas sensing applications,” Nano Lett. 12(3), 1269–1274 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (8)

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7(5), 301–304 (2012).
[Crossref] [PubMed]

W. Hiebert, “Mass sensing: Devices reach single-proton limit,” Nat. Nanotechnol. 7(5), 278–280 (2012).
[Crossref] [PubMed]

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3(9), 533–537 (2008).
[Crossref] [PubMed]

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

Nature (2)

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 1066–1069 (2007).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rep. (1)

K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, “Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles,” Phys. Rep. 503(4–5), 115–163 (2011).
[Crossref]

Phys. Rev. Lett. (2)

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. U.S.A. 111(4), 1310–1315 (2014).
[Crossref] [PubMed]

Other (1)

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Nano-optomechanical disk resonators operating in liquids for sensing applications,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 238–241.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Geometry of the nanobeam OMC cavity with (a, hx, hy) normal = (382 nm, 180 nm, 320 nm) in the normal unit cells and (a, hx, hy) defect = (329 nm, 206 nm, 180 nm) in the defect unit cell, indicated with the blue and red dashed lines, respectively. (b) The normalized Ey field of the localized optical resonance. (c) The normalized displacement field |(Q)| of the mechanical breathing mode confined in the center of the cavity.
Fig. 2
Fig. 2 (a) SEM image of the fabricated device. (b) Experimental setup for optical and mechanical characterizations. TDL, tunable diode laser; FPC, fiber polarization controller; DUT, device under test; OPM, optical power meter; PD, photodetector; ESA, electrical spectrum analyzer. (c) Photo of a chip covered with water, containing many fabricated devices immersed in water.
Fig. 3
Fig. 3 Normalized optical transmission spectra at low (open circles) and high (black lines) optical power in air (a) and immersed in water (b). The red lines are Lorentzian fits to obtain the optical Q-factors. The black rectangles at 1527.7 nm in (a) and at 1563.3 nm in (b) indicate the input laser wavelength when recording the mechanical resonances in air and water, respectively.
Fig. 4
Fig. 4 The simulated redshift of the optical resonance of the cavity as a function of temperatures in air (a) and water (b).
Fig. 5
Fig. 5 Thermomechanical noise spectra of the OMC resonator vibrating in air (red) and water (blue). Solid lines indicate the Lorentzian fits of the peaks in the spectra. Optical input power of 0.39 mW and 3 mW are used for the measurements in air and water, respectively. The inset shows the zoomed noise spectrum measured in air.
Fig. 6
Fig. 6 FEM simulations in the viscous and acoustic regimes of Device 1. (a) Viscous regime. The displacement amplitude (black) of the mechanical breathing mode as a function of time, after relaxing two static forces normally applied on the each sidewall of the nanobeam cavity. The exponential fits (red) of the amplitude envelope are used to calculate the mechanical Q-factor. (b) Viscous regime. Pressure variation field in the liquid at time 0.17 ns. Open boundary conditions are applied at the boundaries of computation domain. Considering the displacement pattern of the breathing mode in Fig. 1(c), the elliptical holes expand or contract symmetrically. The liquid in the 2D simulations in the viscous regime is incompressible. Therefore circles with radius of 50 nm, where open boundary conditions are applied, are placed in the elliptical holes to simulate water flowing into and out of the elliptical holes. (c) Acoustic regime. The frequency response of the displacement (black) to the harmonic forces normally applied on the each sidewall. The mechanical Q-factor and frequency are extracted from the Lorentzian fit (red). (d) Acoustic regime. Pressure variation field in the liquid at 5.84 GHz. The perfectly matched layers (PMLs) are applied at the boundaries of computation domain to absorb the radiating acoustic waves without reflection
Fig. 7
Fig. 7 The measured and simulated mechanical frequency shifts ∆fm /fm after immersed in water (a) and the mechanical Q-factors Qm in water (b) of the three devices with different dimensions.

Tables (2)

Tables Icon

Table 1 Simulated optical resonances and Q-factors of the cavities in air and water.

Tables Icon

Table 2 The measured and simulated mechanical properties of three devices with different dimensions after immersed in water.

Metrics