Abstract

We demonstrate efficient coupling to the optical whispering gallery modes (WGMs) of nematic liquid crystal (NLC) microdroplets immersed in an immiscible aqueous environment. An individual NLC microdroplet, confined at the tip of a microcapillary, was coupled via a tapered optical fiber waveguide positioned correctly within its vicinity. Critical coupling of the taper-microdroplet system was facilitated by adjusting the gap between the taper and the microdroplet to change the overlap of the evanescent electromagnetic fields; efficient and controlled power transfer from the taper waveguide to the NLC microdroplet is indeed possible via the proposed technique. We also found that NLC microdroplets can function as highly sensitive thermal sensors: A maximum temperature sensitivity of 267.6 pm/°C and resolution of 7.5 × 10−2 °C were achieved in a 78-μm-diameter NLC microdroplet.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal

Vishnu Kavungal, Gerald Farrell, Qiang Wu, Arun Kumar Mallik, and Yuliya Semenova
Opt. Express 26(7) 8431-8442 (2018)

Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium

Mani Hossein-Zadeh and Kerry J. Vahala
Opt. Express 14(22) 10800-10810 (2006)

Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides

Alexandr Jonáš, Yasin Karadag, Michael Mestre, and Alper Kiraz
J. Opt. Soc. Am. B 29(12) 3240-3247 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. H. Li, S. Hao, L. Qiang, J. Li, and Y. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
    [Crossref]
  3. Y. Karadag, M. Aas, A. Jonáš, S. Anand, D. McGloin, and A. Kiraz, “Dye lasing in optically manipulated liquid aerosols,” Opt. Lett. 38(10), 1669–1671 (2013).
    [Crossref] [PubMed]
  4. V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
    [Crossref] [PubMed]
  5. R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
    [Crossref] [PubMed]
  6. V. D. Ta, R. Chen, and H. D. Sun, “Self-assembled flexible microlasers,” Adv. Opt. Mater. 24(10), OP60–OP64 (2012).
    [Crossref] [PubMed]
  7. H. Li, J. Li, L. Qiang, Y. Zhang, and S. Hao, “Single-mode lasing of nanowire self-coupled resonator,” Nanoscale 5(14), 6297–6302 (2013).
    [Crossref] [PubMed]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref] [PubMed]
  9. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
    [Crossref]
  10. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  11. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [Crossref] [PubMed]
  12. A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. B 29(12), 3240–3247 (2012).
    [Crossref]
  13. A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
    [Crossref]
  14. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9(11), 499–501 (1984).
    [Crossref] [PubMed]
  15. A. S. Kwok, J. B. Gillespie, A. Serpengüzel, W.-F. Hsieh, and R. K. Chang, “Two-photon-pumped lasing in microdroplets,” Opt. Lett. 17(20), 1435–1437 (1992).
    [Crossref] [PubMed]
  16. J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
    [Crossref] [PubMed]
  17. M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Opt. Express 19(21), 19836–19844 (2011).
    [Crossref] [PubMed]
  18. M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9(9), 572–576 (2015).
    [Crossref] [PubMed]
  19. A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14(16), 3093–3100 (2014).
    [Crossref] [PubMed]
  20. A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
    [Crossref]
  21. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
    [Crossref] [PubMed]
  22. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode,” Opt. Lett. 22(15), 1129-1131 (1997).
  23. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref] [PubMed]
  24. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  25. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
    [Crossref] [PubMed]
  26. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
    [Crossref] [PubMed]
  27. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
    [Crossref]
  28. V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity,” Opt. Express 21(18), 20506–20516 (2013).
    [Crossref] [PubMed]
  29. P. Chýlek, “Partial wave resonances and ripple structure in Mie normalized extinction cross section,” J. Opt. Soc. Am. 66(3), 285–287 (1976).
    [Crossref]
  30. M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. (to be published).
  31. M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun. 271(1), 124–131 (2007).
    [Crossref]
  32. J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
    [Crossref]
  33. J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
    [Crossref]
  34. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
    [Crossref]
  35. C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [Crossref]
  36. B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
    [Crossref]
  37. S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
    [Crossref]
  38. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
    [Crossref]
  39. L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express 19(25), 25792–25798 (2011).
    [Crossref] [PubMed]

2015 (1)

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9(9), 572–576 (2015).
[Crossref] [PubMed]

2014 (1)

A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14(16), 3093–3100 (2014).
[Crossref] [PubMed]

2013 (5)

V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity,” Opt. Express 21(18), 20506–20516 (2013).
[Crossref] [PubMed]

H. Li, S. Hao, L. Qiang, J. Li, and Y. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

Y. Karadag, M. Aas, A. Jonáš, S. Anand, D. McGloin, and A. Kiraz, “Dye lasing in optically manipulated liquid aerosols,” Opt. Lett. 38(10), 1669–1671 (2013).
[Crossref] [PubMed]

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref] [PubMed]

H. Li, J. Li, L. Qiang, Y. Zhang, and S. Hao, “Single-mode lasing of nanowire self-coupled resonator,” Nanoscale 5(14), 6297–6302 (2013).
[Crossref] [PubMed]

2012 (3)

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

V. D. Ta, R. Chen, and H. D. Sun, “Self-assembled flexible microlasers,” Adv. Opt. Mater. 24(10), OP60–OP64 (2012).
[Crossref] [PubMed]

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. B 29(12), 3240–3247 (2012).
[Crossref]

2011 (4)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Opt. Express 19(21), 19836–19844 (2011).
[Crossref] [PubMed]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express 19(25), 25792–25798 (2011).
[Crossref] [PubMed]

2010 (2)

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

2009 (3)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

2008 (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
[Crossref] [PubMed]

2007 (3)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun. 271(1), 124–131 (2007).
[Crossref]

A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

2006 (2)

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
[Crossref] [PubMed]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

2005 (2)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
[Crossref]

2004 (2)

J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

1997 (2)

1992 (1)

1984 (1)

1977 (1)

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

1976 (1)

Aas, M.

A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14(16), 3093–3100 (2014).
[Crossref] [PubMed]

Y. Karadag, M. Aas, A. Jonáš, S. Anand, D. McGloin, and A. Kiraz, “Dye lasing in optically manipulated liquid aerosols,” Opt. Lett. 38(10), 1669–1671 (2013).
[Crossref] [PubMed]

Abate, A. R.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Agresti, J. J.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Anand, S.

A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14(16), 3093–3100 (2014).
[Crossref] [PubMed]

Y. Karadag, M. Aas, A. Jonáš, S. Anand, D. McGloin, and A. Kiraz, “Dye lasing in optically manipulated liquid aerosols,” Opt. Lett. 38(10), 1669–1671 (2013).
[Crossref] [PubMed]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Bandy, D. K.

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun. 271(1), 124–131 (2007).
[Crossref]

Bayraktar, H.

A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14(16), 3093–3100 (2014).
[Crossref] [PubMed]

Birks, T. A.

Boriskina, S. V.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Chang, R. K.

Chen, R.

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref] [PubMed]

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

V. D. Ta, R. Chen, and H. D. Sun, “Self-assembled flexible microlasers,” Adv. Opt. Mater. 24(10), OP60–OP64 (2012).
[Crossref] [PubMed]

Cheung, G.

Chýlek, P.

Dale, E.

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun. 271(1), 124–131 (2007).
[Crossref]

Demirel, A. L.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Demirel, M. C.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

Doganay, S.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Dong, C.-H.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Dündar, M. A.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Gaddam, V. R.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Gauza, S.

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Gillespie, J. B.

Gong, Q.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Guo, G.-C.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Han, Z.-F.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Hao, S.

H. Li, J. Li, L. Qiang, Y. Zhang, and S. Hao, “Single-mode lasing of nanowire self-coupled resonator,” Nanoscale 5(14), 6297–6302 (2013).
[Crossref] [PubMed]

H. Li, S. Hao, L. Qiang, J. Li, and Y. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

Haro-González, P.

He, L.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Hossein-Zadeh, M.

Hsieh, W.-F.

Humar, M.

Humphrey, M. J.

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun. 271(1), 124–131 (2007).
[Crossref]

Jacques, F.

Jampani, V. S. R.

Jiang, X.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Jonáš, A.

Kalaycioglu, H.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Karadag, Y.

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Kiraz, A.

A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14(16), 3093–3100 (2014).
[Crossref] [PubMed]

Y. Karadag, M. Aas, A. Jonáš, S. Anand, D. McGloin, and A. Kiraz, “Dye lasing in optically manipulated liquid aerosols,” Opt. Lett. 38(10), 1669–1671 (2013).
[Crossref] [PubMed]

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. B 29(12), 3240–3247 (2012).
[Crossref]

A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Knight, J. C.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Kurt, A.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Kwok, A. S.

Li, B.-B.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, H.

H. Li, S. Hao, L. Qiang, J. Li, and Y. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

H. Li, J. Li, L. Qiang, Y. Zhang, and S. Hao, “Single-mode lasing of nanowire self-coupled resonator,” Nanoscale 5(14), 6297–6302 (2013).
[Crossref] [PubMed]

Li, J.

H. Li, J. Li, L. Qiang, Y. Zhang, and S. Hao, “Single-mode lasing of nanowire self-coupled resonator,” Nanoscale 5(14), 6297–6302 (2013).
[Crossref] [PubMed]

H. Li, S. Hao, L. Qiang, J. Li, and Y. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Li, Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, Z.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Long, M. B.

Lu, Z. H.

J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
[Crossref] [PubMed]

Manioglu, S.

A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14(16), 3093–3100 (2014).
[Crossref] [PubMed]

Martín, I. R.

Martín, L. L.

McGloin, D.

A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14(16), 3093–3100 (2014).
[Crossref] [PubMed]

Y. Karadag, M. Aas, A. Jonáš, S. Anand, D. McGloin, and A. Kiraz, “Dye lasing in optically manipulated liquid aerosols,” Opt. Lett. 38(10), 1669–1671 (2013).
[Crossref] [PubMed]

Mestre, M.

Mondia, J. P.

J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
[Crossref] [PubMed]

Muševic, I.

Nam, S. H.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
[Crossref]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Ozdemir, S. K.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Özdemir, S. K.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Pérez-Rodríguez, C.

Psaltis, D.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Qiang, L.

H. Li, S. Hao, L. Qiang, J. Li, and Y. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

H. Li, J. Li, L. Qiang, Y. Zhang, and S. Hao, “Single-mode lasing of nanowire self-coupled resonator,” Nanoscale 5(14), 6297–6302 (2013).
[Crossref] [PubMed]

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Rogach, A. L.

J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
[Crossref] [PubMed]

Rosenberger, A. T.

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun. 271(1), 124–131 (2007).
[Crossref]

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

Schäfer, J.

J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
[Crossref] [PubMed]

Sennaroglu, A.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Serpengüzel, A.

Sharma, R.

J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
[Crossref] [PubMed]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Sun, H. D.

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref] [PubMed]

V. D. Ta, R. Chen, and H. D. Sun, “Self-assembled flexible microlasers,” Adv. Opt. Mater. 24(10), OP60–OP64 (2012).
[Crossref] [PubMed]

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

Susha, A. S.

J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
[Crossref] [PubMed]

Ta, V. D.

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref] [PubMed]

V. D. Ta, R. Chen, and H. D. Sun, “Self-assembled flexible microlasers,” Adv. Opt. Mater. 24(10), OP60–OP64 (2012).
[Crossref] [PubMed]

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

Tang, S. K. Y.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Tzeng, H.-M.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Vollmer, F.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wall, K. F.

Wang, L. J.

J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
[Crossref] [PubMed]

Wang, Q.-Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Weitz, D. A.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

White, I. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Whitesides, G. M.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Wu, S.-T.

J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Xiao, L.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Xiao, Y.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Yang, L.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Yin, S.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
[Crossref]

Yun, S. H.

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9(9), 572–576 (2015).
[Crossref] [PubMed]

Zhang, Y.

H. Li, J. Li, L. Qiang, Y. Zhang, and S. Hao, “Single-mode lasing of nanowire self-coupled resonator,” Nanoscale 5(14), 6297–6302 (2013).
[Crossref] [PubMed]

H. Li, S. Hao, L. Qiang, J. Li, and Y. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

Zhu, J.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

V. D. Ta, R. Chen, and H. D. Sun, “Self-assembled flexible microlasers,” Adv. Opt. Mater. 24(10), OP60–OP64 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

H. Li, S. Hao, L. Qiang, J. Li, and Y. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
[Crossref]

J. Appl. Phys. (2)

J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Lab Chip (2)

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14(16), 3093–3100 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008).
[Crossref] [PubMed]

Nanoscale (1)

H. Li, J. Li, L. Qiang, Y. Zhang, and S. Hao, “Single-mode lasing of nanowire self-coupled resonator,” Nanoscale 5(14), 6297–6302 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9(9), 572–576 (2015).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

A. Kiraz, A. Sennaroglu, S. Doğanay, M. A. Dündar, A. Kurt, H. Kalaycıoğlu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun. 271(1), 124–131 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Sci. Rep. (2)

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref] [PubMed]

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Other (1)

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup. Dimensions are not to scale.
Fig. 2
Fig. 2 (a) Micrographs showing the fabricated tapered optical fiber in different regions. Diameter of the taper waist is about 2 μm. (b) Micrograph of the tapered fiber with a capillary microtube positioned in the vicinity. Diameter of the microtube is about 8 μm. The microtube is filled with NLC solution. Inset: SEM image of the capillary microtube. (c) An individual NLC microdroplet with a diameter of about 40 μm overhung out of one end of microtube. (d) Moving the microtube (also microdroplet) towards tapered fiber for achieving evanescent coupling. All images view along the z-axis.
Fig. 3
Fig. 3 (a) Microdroplet of NLC in water overhung out of microtube’s end. Diameter of microdroplet is 80 μm. (b) The same diameter NLC microdroplet via POM with crossed polarizers. (c) Transmission spectrum of the tapered optical fiber waveguide coupled to a NLC microdroplet with a diameter of 50 μm. The measured FSR is 10.49 nm. The calculated mode numbers and positions are shown as well. The lower portion shows the close-up view of spectrum near 1547.6 nm, which is used for Q-factor analysis.
Fig. 4
Fig. 4 Transmission spectrum of the tapered fiber coupled to NLC microdroplet with a diameter of (a) 102.6 μm and (b) 103.9 μm. The positive wavelength shift in (a) indicates a prolate microdroplet, whereas the negative wavelength shift in (b) indicates an oblate microdroplet. (c,d) Close-up view of representative resonance peak. The main dip belongs to the fundamental WGM (l = m) and the small dips are azimuthal modes (lm = 2K, K is a nonzero integer). The dashed lines are the simulated Lorentzian shape of the fundamental resonance.
Fig. 5
Fig. 5 (a) Normalized transmission as a function of taper-microdroplet distance while the tapered fiber waveguide is coupled to the fundamental WGM of the NLC microdroplet (diameter 90 μm). The taper-microdroplet coupling can be divided into three regimes as marked in figure. The red solid line is the polynomial fit to the experimental data. Inset: transmission spectra of a resonance peak with taper-microdroplet distance of 0 (blue line), 200 (red line), and 400 nm (black line). (b) Coupling regimes for a microdroplet with a diameter of 85 μm. Inset: transmission spectra of a resonance peak with taper-microdroplet distance of 0 (blue line), 250 (red line), and 500 nm (black line).
Fig. 6
Fig. 6 (a) Single resonance dip of the tapered fiber waveguide coupled to NLC microdroplet as a function of temperature. The wavelength shift values within 2 °C are calculated and marked in figure. (b) Resonant wavelengths of full four resonance dips (TM1 261, TM1 262, TM1 263 and TM1 264) as a function of temperature from 31 to 41°C. Resonance dips with longer wavelength possess higher temperature sensitivity, and the maximum sensitivity reaches 267.6 pm/°C for TM1 261.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

e 2 π r n Δ λ λ 2

Metrics