H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Phot. Rev. 9, L1–L5 (2015).

[Crossref]

M. Stipčević and R. Ursin, “An on-demand optical quantum random number generator with in-future action and ultra-fast response,” Sci. Rep. 5, 10214 (2015).

[Crossref]

P. Zawadzki, “An improved control mode for the ping-pong protocol operation in imperfect quantum channels,” Quantum Inf. Process 14, 2589–2598 (2015).

[Crossref]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

J. Li, L. Li, H. Jin, and R. Li, “Security analysis of the “Ping-Pong” quantum communication protocol in the presence of collective-rotation noise,” Phys. Lett. A 377, 2729–2734 (2013).

[Crossref]

M. Pavičić, “In quantum direct communication an undetectable eavesdropper can always tell Ψ from Φ Bell states in the message mode,” Phys. Rev. A 87, 042326 (2013).

[Crossref]

Y.-G. Yang, Y.-W. Teng, H.-P. Chai, and Q.-Y. Wen, “Revisiting the security of secure direct communication based on Ping-Pong protocol [quantum inf. process. 8, 347 (2009)],” Quantum Inf. Process. 10, 317–323 (2011).

[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Phot. 4, 686–689 (2011).

[Crossref]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” App. Phys. Lett. 97, 031102 (2010).

[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Phot. 3, 696–705 (2009).

[Crossref]

A. Chamoli and C. M. Bhandari, “Secure direct communication based on ping-pong protocol,” Quantum. Inf. Process. 8, 347–356 (2009).

[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).

[Crossref]

K. Boström and T. Felbinger, “On the security of the ping-pong protocol,” Phys. Lett. A 372, 3953–3956 (2008).

[Crossref]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Optics Express 16, 3032–3040 (2008).

[Crossref]

M. Ostermeyer and N. Walenta, “On the implementation of a deterministic secure coding protocol using polarization entangled photons,” Opt. Commun. 281, 4540–4544 (2008).

[Crossref]

Y.-G. Han, Z.-Q. Yin, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Security of modified Ping-Pong protocol in noisy and lossy channel,” Sci. Rep. 4, 4936 (2007).

[Crossref]

T. Moroder, M. Curty, and N. Lütkenhaus, “One-way quantum key distribution: Simple upper bound on the secret key rate,” Phys. Rev. A 74, 052301 (2006).

[Crossref]

J. H. Shapiro, “Performance analysis for Brandt’s conclusive entangling probe,” Quantum Inform. Process. 5, 11–24 (2006).

[Crossref]

J. H. Shapiro and F. N. C. Wong, “Attacking quantum key distribution with single-photon two-qubit quantum logic,” Phys. Rev. A 73, 012315 (2006).

[Crossref]

A. Niederberger, V. Scarani, and N. Gisin, “Photon-number-splitting versus cloning attacks in practical implementations of the Bennett-Brassard 1984 protocol for quantum cryptography,” Phys. Rev. A 71, 042316 (2005).

[Crossref]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 061803 (2005).

[Crossref]

Z.-X. Man, Z.-J. Zhang, and Y. Li, “Quantum dialoge revisited,” Chin. Phys. Lett. 22, 22–25 (2005).

[Crossref]

Q. Cai and B. Li, “Improving the capacity of the Boström-Felbinger protocol,” Phys. Rev. A 69, 054301 (2004).

[Crossref]

B. A. Nguyen, “Quantum dialogue,” Phys. Lett. A 328, 6–10 (2004).

[Crossref]

X.-B. Wang, “Quantum key distribution with two-qubit quantum codes,” Phys. Rev. Lett. 92, 077902 (2004).

[Crossref]
[PubMed]

A. Wójcik, “Eavesdropping on the “Ping-Pong” quantum communication protocol,” Phys. Rev. Lett. 90, 157901 (2003).

[Crossref]

D. Bruß and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002).

[Crossref]

K. Boström and T. Felbinger, “Deterministic secure direct communication using entanglement,” Phys. Rev. Lett. 89, 187902 (2002).

[Crossref]
[PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[Crossref]

H. Lo, “A simple proof of unconditional security of six-states quantum key distribution scheme,” Quantum Inf. Comp. 1, 81–94 (2001).

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).

[Crossref]
[PubMed]

H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A 61, 062308 (2000).

[Crossref]

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).

[Crossref]

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).

[Crossref]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163–1172 (1997).

[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).

[Crossref]
[PubMed]

M. Pavičić, “Spin correlated interferometry for polarized and unpolarized photons on a beam splitter,” Phys. Rev. A 50, 3486–3491 (1994).

[Crossref]

M. Pavičić and J. Summhammer, “Interferometry with two pairs of spin correlated photons,” Phys. Rev. Lett. 73, 3191–3194 (1994).

[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Phot. Rev. 9, L1–L5 (2015).

[Crossref]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).

[Crossref]

H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A 61, 062308 (2000).

[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography, public key distribution and coin tossing,” in “International Conference on Computers, Systems & Signal Processing, Bangalore, India, December 10–12, 1984,” (IEEE, 1984), 175–179.

A. Chamoli and C. M. Bhandari, “Secure direct communication based on ping-pong protocol,” Quantum. Inf. Process. 8, 347–356 (2009).

[Crossref]

K. Boström and T. Felbinger, “On the security of the ping-pong protocol,” Phys. Lett. A 372, 3953–3956 (2008).

[Crossref]

K. Boström and T. Felbinger, “Deterministic secure direct communication using entanglement,” Phys. Rev. Lett. 89, 187902 (2002).

[Crossref]
[PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography, public key distribution and coin tossing,” in “International Conference on Computers, Systems & Signal Processing, Bangalore, India, December 10–12, 1984,” (IEEE, 1984), 175–179.

D. Bruß and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002).

[Crossref]

Q. Cai and B. Li, “Improving the capacity of the Boström-Felbinger protocol,” Phys. Rev. A 69, 054301 (2004).

[Crossref]

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).

[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).

[Crossref]

Y.-G. Yang, Y.-W. Teng, H.-P. Chai, and Q.-Y. Wen, “Revisiting the security of secure direct communication based on Ping-Pong protocol [quantum inf. process. 8, 347 (2009)],” Quantum Inf. Process. 10, 317–323 (2011).

[Crossref]

A. Chamoli and C. M. Bhandari, “Secure direct communication based on ping-pong protocol,” Quantum. Inf. Process. 8, 347–356 (2009).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

Y.-G. Han, Z.-Q. Yin, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Security of modified Ping-Pong protocol in noisy and lossy channel,” Sci. Rep. 4, 4936 (2007).

[Crossref]

T. Moroder, M. Curty, and N. Lütkenhaus, “One-way quantum key distribution: Simple upper bound on the secret key rate,” Phys. Rev. A 74, 052301 (2006).

[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Phot. Rev. 9, L1–L5 (2015).

[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).

[Crossref]

M. Dušek, N. Lütkenhaus, and M. Hendrych, “Quantum cryptography,” in Progress in Optics, 49E. Wolf, ed. (Elsevier, 2006), chap. 5, 257–354.

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” App. Phys. Lett. 97, 031102 (2010).

[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Phot. 4, 686–689 (2011).

[Crossref]

K. Boström and T. Felbinger, “On the security of the ping-pong protocol,” Phys. Lett. A 372, 3953–3956 (2008).

[Crossref]

K. Boström and T. Felbinger, “Deterministic secure direct communication using entanglement,” Phys. Rev. Lett. 89, 187902 (2002).

[Crossref]
[PubMed]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163–1172 (1997).

[Crossref]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

R. García-Patróon, F. N. C. Wong, and J. H. Shapiro, “Optimal individual attack on BB84 quantum key distribution using single-photon two-qubit quantum logic,” in “Quantum Information and Computation VIII”, 7702 of Proc. of SPIE - CCC code: 0277-786X/10/$ 18, E. J. Donkor, A. Pirich, and H. E. Brandt, eds. (SPIE, 2010).

A. Niederberger, V. Scarani, and N. Gisin, “Photon-number-splitting versus cloning attacks in practical implementations of the Bennett-Brassard 1984 protocol for quantum cryptography,” Phys. Rev. A 71, 042316 (2005).

[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[Crossref]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163–1172 (1997).

[Crossref]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163–1172 (1997).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

Y.-G. Han, Z.-Q. Yin, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Security of modified Ping-Pong protocol in noisy and lossy channel,” Sci. Rep. 4, 4936 (2007).

[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Phot. 3, 696–705 (2009).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

Y.-G. Han, Z.-Q. Yin, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Security of modified Ping-Pong protocol in noisy and lossy channel,” Sci. Rep. 4, 4936 (2007).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

Y.-G. Han, Z.-Q. Yin, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Security of modified Ping-Pong protocol in noisy and lossy channel,” Sci. Rep. 4, 4936 (2007).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

M. Dušek, N. Lütkenhaus, and M. Hendrych, “Quantum cryptography,” in Progress in Optics, 49E. Wolf, ed. (Elsevier, 2006), chap. 5, 257–354.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

J. Li, L. Li, H. Jin, and R. Li, “Security analysis of the “Ping-Pong” quantum communication protocol in the presence of collective-rotation noise,” Phys. Lett. A 377, 2729–2734 (2013).

[Crossref]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).

[Crossref]
[PubMed]

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).

[Crossref]
[PubMed]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).

[Crossref]
[PubMed]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Phot. Rev. 9, L1–L5 (2015).

[Crossref]

Q. Cai and B. Li, “Improving the capacity of the Boström-Felbinger protocol,” Phys. Rev. A 69, 054301 (2004).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

Y.-G. Han, Z.-Q. Yin, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Security of modified Ping-Pong protocol in noisy and lossy channel,” Sci. Rep. 4, 4936 (2007).

[Crossref]

J. Li, L. Li, H. Jin, and R. Li, “Security analysis of the “Ping-Pong” quantum communication protocol in the presence of collective-rotation noise,” Phys. Lett. A 377, 2729–2734 (2013).

[Crossref]

J. Li, L. Li, H. Jin, and R. Li, “Security analysis of the “Ping-Pong” quantum communication protocol in the presence of collective-rotation noise,” Phys. Lett. A 377, 2729–2734 (2013).

[Crossref]

J. Li, L. Li, H. Jin, and R. Li, “Security analysis of the “Ping-Pong” quantum communication protocol in the presence of collective-rotation noise,” Phys. Lett. A 377, 2729–2734 (2013).

[Crossref]

Z.-X. Man, Z.-J. Zhang, and Y. Li, “Quantum dialoge revisited,” Chin. Phys. Lett. 22, 22–25 (2005).

[Crossref]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Optics Express 16, 3032–3040 (2008).

[Crossref]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 061803 (2005).

[Crossref]

H. Lo, “A simple proof of unconditional security of six-states quantum key distribution scheme,” Quantum Inf. Comp. 1, 81–94 (2001).

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).

[Crossref]

T. Moroder, M. Curty, and N. Lütkenhaus, “One-way quantum key distribution: Simple upper bound on the secret key rate,” Phys. Rev. A 74, 052301 (2006).

[Crossref]

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).

[Crossref]

M. Dušek, N. Lütkenhaus, and M. Hendrych, “Quantum cryptography,” in Progress in Optics, 49E. Wolf, ed. (Elsevier, 2006), chap. 5, 257–354.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Phot. 4, 686–689 (2011).

[Crossref]

D. Bruß and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002).

[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Phot. 4, 686–689 (2011).

[Crossref]

Z.-X. Man, Z.-J. Zhang, and Y. Li, “Quantum dialoge revisited,” Chin. Phys. Lett. 22, 22–25 (2005).

[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).

[Crossref]
[PubMed]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Optics Express 16, 3032–3040 (2008).

[Crossref]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 061803 (2005).

[Crossref]

T. Moroder, M. Curty, and N. Lütkenhaus, “One-way quantum key distribution: Simple upper bound on the secret key rate,” Phys. Rev. A 74, 052301 (2006).

[Crossref]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Optics Express 16, 3032–3040 (2008).

[Crossref]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 061803 (2005).

[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Phot. Rev. 9, L1–L5 (2015).

[Crossref]

B. A. Nguyen, “Quantum dialogue,” Phys. Lett. A 328, 6–10 (2004).

[Crossref]

A. Niederberger, V. Scarani, and N. Gisin, “Photon-number-splitting versus cloning attacks in practical implementations of the Bennett-Brassard 1984 protocol for quantum cryptography,” Phys. Rev. A 71, 042316 (2005).

[Crossref]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163–1172 (1997).

[Crossref]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

M. Ostermeyer and N. Walenta, “On the implementation of a deterministic secure coding protocol using polarization entangled photons,” Opt. Commun. 281, 4540–4544 (2008).

[Crossref]

Z.-Y. J. Ou, Multi-Photon Quantum Interference (Springer, 2007).

M. Pavičić, “In quantum direct communication an undetectable eavesdropper can always tell Ψ from Φ Bell states in the message mode,” Phys. Rev. A 87, 042326 (2013).

[Crossref]

M. Pavičić, “Spin correlated interferometry for polarized and unpolarized photons on a beam splitter,” Phys. Rev. A 50, 3486–3491 (1994).

[Crossref]

M. Pavičić and J. Summhammer, “Interferometry with two pairs of spin correlated photons,” Phys. Rev. Lett. 73, 3191–3194 (1994).

[Crossref]

M. Pavičić, Quantum Computation and Quantum Communication: Theory and Experiments (Springer, 2005).

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).

[Crossref]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163–1172 (1997).

[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[Crossref]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 061803 (2005).

[Crossref]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).

[Crossref]

A. Niederberger, V. Scarani, and N. Gisin, “Photon-number-splitting versus cloning attacks in practical implementations of the Bennett-Brassard 1984 protocol for quantum cryptography,” Phys. Rev. A 71, 042316 (2005).

[Crossref]

J. H. Shapiro, “Performance analysis for Brandt’s conclusive entangling probe,” Quantum Inform. Process. 5, 11–24 (2006).

[Crossref]

J. H. Shapiro and F. N. C. Wong, “Attacking quantum key distribution with single-photon two-qubit quantum logic,” Phys. Rev. A 73, 012315 (2006).

[Crossref]

R. García-Patróon, F. N. C. Wong, and J. H. Shapiro, “Optimal individual attack on BB84 quantum key distribution using single-photon two-qubit quantum logic,” in “Quantum Information and Computation VIII”, 7702 of Proc. of SPIE - CCC code: 0277-786X/10/$ 18, E. J. Donkor, A. Pirich, and H. E. Brandt, eds. (SPIE, 2010).

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” App. Phys. Lett. 97, 031102 (2010).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” App. Phys. Lett. 97, 031102 (2010).

[Crossref]

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).

[Crossref]
[PubMed]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Phot. 4, 686–689 (2011).

[Crossref]

M. Stipčević and R. Ursin, “An on-demand optical quantum random number generator with in-future action and ultra-fast response,” Sci. Rep. 5, 10214 (2015).

[Crossref]

M. Pavičić and J. Summhammer, “Interferometry with two pairs of spin correlated photons,” Phys. Rev. Lett. 73, 3191–3194 (1994).

[Crossref]

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).

[Crossref]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Phot. Rev. 9, L1–L5 (2015).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

Y.-G. Yang, Y.-W. Teng, H.-P. Chai, and Q.-Y. Wen, “Revisiting the security of secure direct communication based on Ping-Pong protocol [quantum inf. process. 8, 347 (2009)],” Quantum Inf. Process. 10, 317–323 (2011).

[Crossref]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” App. Phys. Lett. 97, 031102 (2010).

[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[Crossref]

H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A 61, 062308 (2000).

[Crossref]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

M. Stipčević and R. Ursin, “An on-demand optical quantum random number generator with in-future action and ultra-fast response,” Sci. Rep. 5, 10214 (2015).

[Crossref]

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).

[Crossref]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

M. Ostermeyer and N. Walenta, “On the implementation of a deterministic secure coding protocol using polarization entangled photons,” Opt. Commun. 281, 4540–4544 (2008).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

Y.-G. Han, Z.-Q. Yin, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Security of modified Ping-Pong protocol in noisy and lossy channel,” Sci. Rep. 4, 4936 (2007).

[Crossref]

X.-B. Wang, “Quantum key distribution with two-qubit quantum codes,” Phys. Rev. Lett. 92, 077902 (2004).

[Crossref]
[PubMed]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).

[Crossref]
[PubMed]

Y.-G. Yang, Y.-W. Teng, H.-P. Chai, and Q.-Y. Wen, “Revisiting the security of secure direct communication based on Ping-Pong protocol [quantum inf. process. 8, 347 (2009)],” Quantum Inf. Process. 10, 317–323 (2011).

[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Phot. 4, 686–689 (2011).

[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Phot. 4, 686–689 (2011).

[Crossref]

A. Wójcik, “Eavesdropping on the “Ping-Pong” quantum communication protocol,” Phys. Rev. Lett. 90, 157901 (2003).

[Crossref]

J. H. Shapiro and F. N. C. Wong, “Attacking quantum key distribution with single-photon two-qubit quantum logic,” Phys. Rev. A 73, 012315 (2006).

[Crossref]

R. García-Patróon, F. N. C. Wong, and J. H. Shapiro, “Optimal individual attack on BB84 quantum key distribution using single-photon two-qubit quantum logic,” in “Quantum Information and Computation VIII”, 7702 of Proc. of SPIE - CCC code: 0277-786X/10/$ 18, E. J. Donkor, A. Pirich, and H. E. Brandt, eds. (SPIE, 2010).

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

Y.-G. Yang, Y.-W. Teng, H.-P. Chai, and Q.-Y. Wen, “Revisiting the security of secure direct communication based on Ping-Pong protocol [quantum inf. process. 8, 347 (2009)],” Quantum Inf. Process. 10, 317–323 (2011).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

Y.-G. Han, Z.-Q. Yin, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Security of modified Ping-Pong protocol in noisy and lossy channel,” Sci. Rep. 4, 4936 (2007).

[Crossref]

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).

[Crossref]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” App. Phys. Lett. 97, 031102 (2010).

[Crossref]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

P. Zawadzki, “An improved control mode for the ping-pong protocol operation in imperfect quantum channels,” Quantum Inf. Process 14, 2589–2598 (2015).

[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).

[Crossref]
[PubMed]

Z.-X. Man, Z.-J. Zhang, and Y. Li, “Quantum dialoge revisited,” Chin. Phys. Lett. 22, 22–25 (2005).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” App. Phys. Lett. 97, 031102 (2010).

[Crossref]

Z.-X. Man, Z.-J. Zhang, and Y. Li, “Quantum dialoge revisited,” Chin. Phys. Lett. 22, 22–25 (2005).

[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Phot. Rev. 9, L1–L5 (2015).

[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Phot. 4, 686–689 (2011).

[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Phot. 3, 696–705 (2009).

[Crossref]

M. Ostermeyer and N. Walenta, “On the implementation of a deterministic secure coding protocol using polarization entangled photons,” Opt. Commun. 281, 4540–4544 (2008).

[Crossref]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).

[Crossref]
[PubMed]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Optics Express 16, 3032–3040 (2008).

[Crossref]

J. Li, L. Li, H. Jin, and R. Li, “Security analysis of the “Ping-Pong” quantum communication protocol in the presence of collective-rotation noise,” Phys. Lett. A 377, 2729–2734 (2013).

[Crossref]

K. Boström and T. Felbinger, “On the security of the ping-pong protocol,” Phys. Lett. A 372, 3953–3956 (2008).

[Crossref]

B. A. Nguyen, “Quantum dialogue,” Phys. Lett. A 328, 6–10 (2004).

[Crossref]

M. Pavičić, “In quantum direct communication an undetectable eavesdropper can always tell Ψ from Φ Bell states in the message mode,” Phys. Rev. A 87, 042326 (2013).

[Crossref]

Q. Cai and B. Li, “Improving the capacity of the Boström-Felbinger protocol,” Phys. Rev. A 69, 054301 (2004).

[Crossref]

H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A 61, 062308 (2000).

[Crossref]

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).

[Crossref]

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).

[Crossref]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 061803 (2005).

[Crossref]

M. Pavičić, “Spin correlated interferometry for polarized and unpolarized photons on a beam splitter,” Phys. Rev. A 50, 3486–3491 (1994).

[Crossref]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163–1172 (1997).

[Crossref]

A. Niederberger, V. Scarani, and N. Gisin, “Photon-number-splitting versus cloning attacks in practical implementations of the Bennett-Brassard 1984 protocol for quantum cryptography,” Phys. Rev. A 71, 042316 (2005).

[Crossref]

T. Moroder, M. Curty, and N. Lütkenhaus, “One-way quantum key distribution: Simple upper bound on the secret key rate,” Phys. Rev. A 74, 052301 (2006).

[Crossref]

J. H. Shapiro and F. N. C. Wong, “Attacking quantum key distribution with single-photon two-qubit quantum logic,” Phys. Rev. A 73, 012315 (2006).

[Crossref]

X.-B. Wang, “Quantum key distribution with two-qubit quantum codes,” Phys. Rev. Lett. 92, 077902 (2004).

[Crossref]
[PubMed]

M. Pavičić and J. Summhammer, “Interferometry with two pairs of spin correlated photons,” Phys. Rev. Lett. 73, 3191–3194 (1994).

[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).

[Crossref]
[PubMed]

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).

[Crossref]
[PubMed]

D. Bruß and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002).

[Crossref]

K. Boström and T. Felbinger, “Deterministic secure direct communication using entanglement,” Phys. Rev. Lett. 89, 187902 (2002).

[Crossref]
[PubMed]

A. Wójcik, “Eavesdropping on the “Ping-Pong” quantum communication protocol,” Phys. Rev. Lett. 90, 157901 (2003).

[Crossref]

H. Lo, “A simple proof of unconditional security of six-states quantum key distribution scheme,” Quantum Inf. Comp. 1, 81–94 (2001).

P. Zawadzki, “An improved control mode for the ping-pong protocol operation in imperfect quantum channels,” Quantum Inf. Process 14, 2589–2598 (2015).

[Crossref]

Y.-G. Yang, Y.-W. Teng, H.-P. Chai, and Q.-Y. Wen, “Revisiting the security of secure direct communication based on Ping-Pong protocol [quantum inf. process. 8, 347 (2009)],” Quantum Inf. Process. 10, 317–323 (2011).

[Crossref]

J. H. Shapiro, “Performance analysis for Brandt’s conclusive entangling probe,” Quantum Inform. Process. 5, 11–24 (2006).

[Crossref]

A. Chamoli and C. M. Bhandari, “Secure direct communication based on ping-pong protocol,” Quantum. Inf. Process. 8, 347–356 (2009).

[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).

[Crossref]

Y.-G. Han, Z.-Q. Yin, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Security of modified Ping-Pong protocol in noisy and lossy channel,” Sci. Rep. 4, 4936 (2007).

[Crossref]

M. Stipčević and R. Ursin, “An on-demand optical quantum random number generator with in-future action and ultra-fast response,” Sci. Rep. 5, 10214 (2015).

[Crossref]

H. Chen, Z.-Y. Zhou, A. J. J. Zangana, Z.-Q. Yin, J. Wu, Y.-G. Han, S. Wang, H.-W. Li, D.-Y. He, S. K. Tawfeeq, B.-S. Shi, G.-C. Guo, W. Chen, and Z.-F. Han, “Experimental demonstration on the deterministic quantum key distribution based on entangled photons,” Sci. Rep. 6, 20962 (2016).

[Crossref]
[PubMed]

R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).

[Crossref]
[PubMed]

R. García-Patróon, F. N. C. Wong, and J. H. Shapiro, “Optimal individual attack on BB84 quantum key distribution using single-photon two-qubit quantum logic,” in “Quantum Information and Computation VIII”, 7702 of Proc. of SPIE - CCC code: 0277-786X/10/$ 18, E. J. Donkor, A. Pirich, and H. E. Brandt, eds. (SPIE, 2010).

C. H. Bennett and G. Brassard, “Quantum cryptography, public key distribution and coin tossing,” in “International Conference on Computers, Systems & Signal Processing, Bangalore, India, December 10–12, 1984,” (IEEE, 1984), 175–179.

M. Dušek, N. Lütkenhaus, and M. Hendrych, “Quantum cryptography,” in Progress in Optics, 49E. Wolf, ed. (Elsevier, 2006), chap. 5, 257–354.

M. Pavičić, Quantum Computation and Quantum Communication: Theory and Experiments (Springer, 2005).

Z.-Y. J. Ou, Multi-Photon Quantum Interference (Springer, 2007).