Abstract

We report, for the first time to our knowledge, the experimental demonstration of multi-cavity optoelectronic oscillators where the cavities are provided by the different cores of a multicore fiber. We implemented two multi-cavity architectures over a 20-m-long 7-core fiber link: unbalanced dual-cavity oscillation (the cavity lengths are a multiple of a reference value) and multi-cavity Vernier oscillation (the cavity lengths are slightly different). Since all the cavities are hosted under a single fiber cladding and are subject to the same environmental and mechanical conditions, optoelectronic oscillators built upon multicore fibers benefit from improved performance stability as compared to independent singlemode fiber cavities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-cavity optoelectronic oscillators using multicore fibers

Sergi García and Ivana Gasulla
Opt. Express 23(3) 2403-2415 (2015)

Comprehensive computational model of single- and dual-loop optoelectronic oscillators with experimental verification

Etgar C. Levy, Olukayode Okusaga, Moshe Horowitz, Curtis R. Menyuk, Weimin Zhou, and Gary M. Carter
Opt. Express 18(20) 21461-21476 (2010)

Integrated optoelectronic oscillator

Jian Tang, Tengfei Hao, Wei Li, David Domenech, Rocio Baños, Pascual Muñoz, Ninghua Zhu, José Capmany, and Ming Li
Opt. Express 26(9) 12257-12265 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  3. I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
    [Crossref]
  4. S. Garcia and I. Gasulla, “Design of Heterogeneous Multicore Fibers as Sampled True-Time Delay Lines,” Opt. Lett. 40(4), 621–624 (2015).
    [Crossref] [PubMed]
  5. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  6. X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
    [Crossref]
  7. T. Bánky, B. Horváth, and T. Berceli, “Optimum configuration of multiloop optoelectronic oscillators,” J. Opt. Soc. Am. B 23(7), 1371–1380 (2006).
    [Crossref]
  8. S. García and I. Gasulla, “Multi-cavity optoelectronic oscillators using multicore fibers,” Opt. Express 23(3), 2403–2415 (2015).
    [Crossref] [PubMed]
  9. Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
    [Crossref]
  10. W. Li and J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
    [Crossref]
  11. O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.
  12. T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Marioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, “32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper Th5C.3.
  13. D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 405–410.
    [Crossref]
  14. K. Mikitchuk, A. Chizh, and S. Malyshev, “Modeling and design of delay-line optoelectronic oscillators,” IEEE J. Quantum Electron. 52(10), 1–8 (2016).
    [Crossref]
  15. S. Pan, P. Zhou, Z. Tang, Y. Zhang, F. Zhang, and D. Zhu, “Optoelectronic Oscillator Based on Polarization Modulation,” Fiber Integr. Opt. 34(4), 185–203 (2015).
    [Crossref]

2016 (1)

K. Mikitchuk, A. Chizh, and S. Malyshev, “Modeling and design of delay-line optoelectronic oscillators,” IEEE J. Quantum Electron. 52(10), 1–8 (2016).
[Crossref]

2015 (3)

2013 (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

2012 (2)

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

2010 (1)

2006 (1)

2000 (1)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

1996 (1)

Baili, G.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Bánky, T.

Ben, D.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

Berceli, T.

Berger, P.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Bretenaker, F.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

Chizh, A.

K. Mikitchuk, A. Chizh, and S. Malyshev, “Modeling and design of delay-line optoelectronic oscillators,” IEEE J. Quantum Electron. 52(10), 1–8 (2016).
[Crossref]

Crozatier, V.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Dolfi, D.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Eliyahu, D.

D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 405–410.
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Garcia, S.

García, S.

Gasulla, I.

Goldfarb, F.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Guo, R.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

Horváth, B.

Lelièvre, O.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Li, W.

Llopis, O.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Lloret, J.

Maleki, L.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 405–410.
[Crossref]

Malyshev, S.

K. Mikitchuk, A. Chizh, and S. Malyshev, “Modeling and design of delay-line optoelectronic oscillators,” IEEE J. Quantum Electron. 52(10), 1–8 (2016).
[Crossref]

Mikitchuk, K.

K. Mikitchuk, A. Chizh, and S. Malyshev, “Modeling and design of delay-line optoelectronic oscillators,” IEEE J. Quantum Electron. 52(10), 1–8 (2016).
[Crossref]

Mora, J.

Morvan, L.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Pan, M.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

Pan, S.

S. Pan, P. Zhou, Z. Tang, Y. Zhang, F. Zhang, and D. Zhu, “Optoelectronic Oscillator Based on Polarization Modulation,” Fiber Integr. Opt. 34(4), 185–203 (2015).
[Crossref]

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

Pillet, G.

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Sales, S.

Sancho, J.

Tang, Z.

S. Pan, P. Zhou, Z. Tang, Y. Zhang, F. Zhang, and D. Zhu, “Optoelectronic Oscillator Based on Polarization Modulation,” Fiber Integr. Opt. 34(4), 185–203 (2015).
[Crossref]

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

Yao, J.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

W. Li and J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
[Crossref]

Yao, X. S.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

Zhang, F.

S. Pan, P. Zhou, Z. Tang, Y. Zhang, F. Zhang, and D. Zhu, “Optoelectronic Oscillator Based on Polarization Modulation,” Fiber Integr. Opt. 34(4), 185–203 (2015).
[Crossref]

Zhang, Y.

S. Pan, P. Zhou, Z. Tang, Y. Zhang, F. Zhang, and D. Zhu, “Optoelectronic Oscillator Based on Polarization Modulation,” Fiber Integr. Opt. 34(4), 185–203 (2015).
[Crossref]

Zhao, Y.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

Zhou, P.

S. Pan, P. Zhou, Z. Tang, Y. Zhang, F. Zhang, and D. Zhu, “Optoelectronic Oscillator Based on Polarization Modulation,” Fiber Integr. Opt. 34(4), 185–203 (2015).
[Crossref]

Zhu, D.

S. Pan, P. Zhou, Z. Tang, Y. Zhang, F. Zhang, and D. Zhu, “Optoelectronic Oscillator Based on Polarization Modulation,” Fiber Integr. Opt. 34(4), 185–203 (2015).
[Crossref]

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

Fiber Integr. Opt. (1)

S. Pan, P. Zhou, Z. Tang, Y. Zhang, F. Zhang, and D. Zhu, “Optoelectronic Oscillator Based on Polarization Modulation,” Fiber Integr. Opt. 34(4), 185–203 (2015).
[Crossref]

IEEE J. Quantum Electron. (2)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

K. Mikitchuk, A. Chizh, and S. Malyshev, “Modeling and design of delay-line optoelectronic oscillators,” IEEE J. Quantum Electron. 52(10), 1–8 (2016).
[Crossref]

IEEE Photonics J. (1)

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technol. Lett. 24(17), 1487–1489 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (3)

O. Lelièvre, V. Crozatier, G. Baili, P. Berger, G. Pillet, D. Dolfi, L. Morvan, F. Goldfarb, F. Bretenaker, and O. Llopis, “Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator,” in Proceedings of IEEE 2016 Int. Topical Meeting on Microwave Photonics (IEEE, 2016), pp. 106–109.

T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Marioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, “32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper Th5C.3.

D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 405–410.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for the dual-cavity unbalanced OEO over a 20-meter 7-core fiber. We demonstrated three different configurations: 1- and 6-core cavities (k1 = 1), 2- and 5-core cavities (k1 = 2), 3- and 4-core cavities (k1 = 3). PC: polarization controller, RF: radiofrequency, EOM: electro-optic modulator, EDFA: Erbium-doped fiber amplifier, VOA: variable optical attenuator, PD: photodetector. Blue: optical path. Red: electrical path.
Fig. 2
Fig. 2 Experimental setup for the multi-cavity Vernier OEO over a 7-core fiber. We compared both 2- and 3-cavity OEOs. PC: polarization controller, RF: radiofrequency, EOM: electro-optic modulator, VDL: variable delay line, EDFA: Erbium-doped fiber amplifier, VOA: variable optical attenuator, PD: photodetector. Blue: optical path. Red: electrical path.
Fig. 3
Fig. 3 Experimental oscillation spectra of a dual-cavity unbalanced OEO using a 20-meter 7-core fiber for three different configurations: (a, d) 1- and 6-core cavities (k1 = 1); (b, e) 2- and 5-core cavities (k1 = 2); (c, f) 3- and 4-core cavities (k1 = 3). Upper figures correspond to the cavities in isolation and lower figures to the resulting dual-loop OEO.
Fig. 4
Fig. 4 Experimental oscillation spectra of a multi-cavity Vernier OEO using a 20-meter 7-core fiber for (a) each of the 3 cavities in isolation, (b) dual- versus triple-loop configurations, and 3 consecutive oscillation frequencies for (c) dual- and (d) triple-loop OEOs.
Fig. 5
Fig. 5 Experimental phase noise of the multi-cavity OEO for (Left) dual-cavity unbalanced OEO with 2- and 5-core cavities (k1 = 2), and (Right) 2- and 3-cavity Vernier configurations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f o = m k 1 τ g L+ τ S , f o = n ( N k 1 ) τ g L+ τ L , m, n= 1, 2, ,
f o = n Δτ , n= 1, 2, ,

Metrics