Abstract

We developed a new method to fabricate tilted fiber Bragg gratings (TFBGs) by using a femtosecond laser with a phase mask. During the laser processing, the fiber was obliquely moved at a tilt angle, in which the laser beam and the phase mask were fixed. The peak loss of the cladding modes with a tilt angle of 4.9° reaches to ~-8 dB, and the insertion loss is less than −0.2 dB. The TFBG was stable at temperature up to 700°C and slight degraded at 800 °C. The temperature sensing of the TFBG was demonstrated at a high temperature up to 800°C. The temperature sensitivities of the Bragg mode, the ghost mode, and the cladding mode were measured to be 15.72 pm/°C, 15.56 pm/°C, and 15.52 pm/°C, respectively. The refractive index response of the TFBGs was also measured.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interrogation of coarsely sampled tilted fiber Bragg grating (TFBG) sensors with KLT

Madina Shaimerdenova, Aliya Bekmurzayeva, Marzhan Sypabekova, and Daniele Tosi
Opt. Express 25(26) 33487-33496 (2017)

Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution

Tao Wang, Kun Liu, Junfeng Jiang, Meng Xue, Pengxiang Chang, and Tiegen Liu
Opt. Express 25(13) 14900-14909 (2017)

Temperature-calibrated high-precision refractometer using a tilted fiber Bragg grating

Biqiang Jiang, Kaiming Zhou, Changle Wang, Yunhe Zhao, Jianlin Zhao, and Lin Zhang
Opt. Express 25(21) 25910-25918 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Alberto, C. A. Marques, J. L. Pinto, and R. N. Nogueira, “Three-parameter optical fiber sensor based on a tilted fiber Bragg grating,” Appl. Opt. 49(31), 6085–6091 (2010).
    [Crossref]
  2. X. Chen, J. Xu, X. Zhang, T. Guo, and B. O. Guan, “Wide Range Refractive Index Measurement Using a Multi-Angle Tilted Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
    [Crossref]
  3. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [Crossref]
  4. S. C. Kang, S. Y. Kim, B. L. Sang, and S. W. Kwon, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photonics Technol. Lett. 10(10), 1461–1463 (1998).
    [Crossref]
  5. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [Crossref] [PubMed]
  6. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  7. C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
    [Crossref]
  8. C. Chen, Y. S. Yu, R. Yang, C. Wang, J. C. Guo, Y. Xue, Q. D. Chen, and H. B. Sun, “Reflective optical fiber sensors based on tilted fiber Bragg gratings fabricated with femtosecond laser,” J. Lightwave Technol. 31(3), 455–460 (2013).
    [Crossref]
  9. E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
    [Crossref]
  10. A. Kameyama, M. Katto, and A. Yokotani, “A simplified fabrication technique for tilted fiber Bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
    [Crossref]
  11. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [Crossref] [PubMed]
  12. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
    [Crossref]
  13. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
    [Crossref]
  14. M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600°C,” Opt. Lett. 35(4), 586–588 (2010).
    [Crossref] [PubMed]
  15. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
    [Crossref]
  16. W. Cui, T. Chen, J. Si, F. Chen, and X. Hou, “Femtosecond laser processing of fiber Bragg gratings with photo-induced gradient-index assisted focusing,” J. Micromech. Microeng. 24(7), 075015 (2014).
    [Crossref]
  17. H. Chikh-Bled, K. Chah, Á. González-Vila, B. Lasri, and C. Caucheteur, “Behavior of femtosecond laser-induced eccentric fiber Bragg gratings at very high temperatures,” Opt. Lett. 41(17), 4048–4051 (2016).
    [Crossref] [PubMed]
  18. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
    [Crossref] [PubMed]
  19. C. Mou, K. Zhou, L. Zhang, and I. Bennion, “Characterization of 45°-tilted fiber grating and its polarization function in fiber ring laser,” J. Opt. Soc. Am. B 26(10), 1905–1911 (2009).
    [Crossref]
  20. K. Markowski and P. Gąsior, “Inscription of the fibre Bragg gratings with femtosecond lasers,” Proc. SPIE 9290, 885–892 (2014).
  21. C. Chen, L. Xiong, A. Jafari, and J. Albert, “Differential sensitivity characteristics of tilted fiber Bragg grating sensors,” Proc. SPIE 6004, 60040B (2005).
    [Crossref]

2017 (1)

X. Chen, J. Xu, X. Zhang, T. Guo, and B. O. Guan, “Wide Range Refractive Index Measurement Using a Multi-Angle Tilted Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

2016 (1)

2014 (3)

A. Kameyama, M. Katto, and A. Yokotani, “A simplified fabrication technique for tilted fiber Bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
[Crossref]

W. Cui, T. Chen, J. Si, F. Chen, and X. Hou, “Femtosecond laser processing of fiber Bragg gratings with photo-induced gradient-index assisted focusing,” J. Micromech. Microeng. 24(7), 075015 (2014).
[Crossref]

K. Markowski and P. Gąsior, “Inscription of the fibre Bragg gratings with femtosecond lasers,” Proc. SPIE 9290, 885–892 (2014).

2013 (2)

2010 (2)

2009 (1)

2008 (2)

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[Crossref] [PubMed]

2007 (3)

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[Crossref] [PubMed]

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

2005 (1)

C. Chen, L. Xiong, A. Jafari, and J. Albert, “Differential sensitivity characteristics of tilted fiber Bragg grating sensors,” Proc. SPIE 6004, 60040B (2005).
[Crossref]

2004 (3)

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

1998 (1)

S. C. Kang, S. Y. Kim, B. L. Sang, and S. W. Kwon, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photonics Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Albert, J.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[Crossref] [PubMed]

C. Chen, L. Xiong, A. Jafari, and J. Albert, “Differential sensitivity characteristics of tilted fiber Bragg grating sensors,” Proc. SPIE 6004, 60040B (2005).
[Crossref]

Alberto, N. J.

Åslund, M. L.

Bennion, I.

Canning, J.

Caucheteur, C.

H. Chikh-Bled, K. Chah, Á. González-Vila, B. Lasri, and C. Caucheteur, “Behavior of femtosecond laser-induced eccentric fiber Bragg gratings at very high temperatures,” Opt. Lett. 41(17), 4048–4051 (2016).
[Crossref] [PubMed]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

Chah, K.

Chan, C. F.

Chehura, E.

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

Chen, C.

C. Chen, Y. S. Yu, R. Yang, C. Wang, J. C. Guo, Y. Xue, Q. D. Chen, and H. B. Sun, “Reflective optical fiber sensors based on tilted fiber Bragg gratings fabricated with femtosecond laser,” J. Lightwave Technol. 31(3), 455–460 (2013).
[Crossref]

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[Crossref] [PubMed]

C. Chen, L. Xiong, A. Jafari, and J. Albert, “Differential sensitivity characteristics of tilted fiber Bragg grating sensors,” Proc. SPIE 6004, 60040B (2005).
[Crossref]

Chen, F.

W. Cui, T. Chen, J. Si, F. Chen, and X. Hou, “Femtosecond laser processing of fiber Bragg gratings with photo-induced gradient-index assisted focusing,” J. Micromech. Microeng. 24(7), 075015 (2014).
[Crossref]

Chen, Q. D.

Chen, T.

W. Cui, T. Chen, J. Si, F. Chen, and X. Hou, “Femtosecond laser processing of fiber Bragg gratings with photo-induced gradient-index assisted focusing,” J. Micromech. Microeng. 24(7), 075015 (2014).
[Crossref]

Chen, X.

X. Chen, J. Xu, X. Zhang, T. Guo, and B. O. Guan, “Wide Range Refractive Index Measurement Using a Multi-Angle Tilted Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

Chikh-Bled, H.

Cook, K.

Cui, W.

W. Cui, T. Chen, J. Si, F. Chen, and X. Hou, “Femtosecond laser processing of fiber Bragg gratings with photo-induced gradient-index assisted focusing,” J. Micromech. Microeng. 24(7), 075015 (2014).
[Crossref]

Ding, H.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Gasior, P.

K. Markowski and P. Gąsior, “Inscription of the fibre Bragg gratings with femtosecond lasers,” Proc. SPIE 9290, 885–892 (2014).

González-Vila, Á.

Grattan, K. T. V.

Grobnic, D.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Guan, B. O.

X. Chen, J. Xu, X. Zhang, T. Guo, and B. O. Guan, “Wide Range Refractive Index Measurement Using a Multi-Angle Tilted Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

Guo, J. C.

Guo, T.

X. Chen, J. Xu, X. Zhang, T. Guo, and B. O. Guan, “Wide Range Refractive Index Measurement Using a Multi-Angle Tilted Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

Hou, X.

W. Cui, T. Chen, J. Si, F. Chen, and X. Hou, “Femtosecond laser processing of fiber Bragg gratings with photo-induced gradient-index assisted focusing,” J. Micromech. Microeng. 24(7), 075015 (2014).
[Crossref]

Jafari, A.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[Crossref] [PubMed]

C. Chen, L. Xiong, A. Jafari, and J. Albert, “Differential sensitivity characteristics of tilted fiber Bragg grating sensors,” Proc. SPIE 6004, 60040B (2005).
[Crossref]

James, S. W.

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

Kameyama, A.

A. Kameyama, M. Katto, and A. Yokotani, “A simplified fabrication technique for tilted fiber Bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
[Crossref]

Kang, S. C.

S. C. Kang, S. Y. Kim, B. L. Sang, and S. W. Kwon, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photonics Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Katto, M.

A. Kameyama, M. Katto, and A. Yokotani, “A simplified fabrication technique for tilted fiber Bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
[Crossref]

Kim, S. Y.

S. C. Kang, S. Y. Kim, B. L. Sang, and S. W. Kwon, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photonics Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Kwon, S. W.

S. C. Kang, S. Y. Kim, B. L. Sang, and S. W. Kwon, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photonics Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Laronche, A.

Lasri, B.

Li, Y.

Liao, C. R.

Lu, P.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Markowski, K.

K. Markowski and P. Gąsior, “Inscription of the fibre Bragg gratings with femtosecond lasers,” Proc. SPIE 9290, 885–892 (2014).

Marques, C. A.

Mégret, P.

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

Mou, C.

Nogueira, R. N.

Pinto, J. L.

Sang, B. L.

S. C. Kang, S. Y. Kim, B. L. Sang, and S. W. Kwon, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photonics Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Si, J.

W. Cui, T. Chen, J. Si, F. Chen, and X. Hou, “Femtosecond laser processing of fiber Bragg gratings with photo-induced gradient-index assisted focusing,” J. Micromech. Microeng. 24(7), 075015 (2014).
[Crossref]

Smelser, C. W.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

Stevenson, M.

Sun, H. B.

Sun, T.

Tatam, R. P.

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

Thomson, D. J.

Unruh, J.

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Wang, C.

Wang, D. N.

Xiong, L.

C. Chen, L. Xiong, A. Jafari, and J. Albert, “Differential sensitivity characteristics of tilted fiber Bragg grating sensors,” Proc. SPIE 6004, 60040B (2005).
[Crossref]

Xu, J.

X. Chen, J. Xu, X. Zhang, T. Guo, and B. O. Guan, “Wide Range Refractive Index Measurement Using a Multi-Angle Tilted Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

Xue, Y.

Yang, R.

Yokotani, A.

A. Kameyama, M. Katto, and A. Yokotani, “A simplified fabrication technique for tilted fiber Bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
[Crossref]

Yu, Y. S.

Zhang, L.

Zhang, X.

X. Chen, J. Xu, X. Zhang, T. Guo, and B. O. Guan, “Wide Range Refractive Index Measurement Using a Multi-Angle Tilted Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

Zhou, K.

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (3)

X. Chen, J. Xu, X. Zhang, T. Guo, and B. O. Guan, “Wide Range Refractive Index Measurement Using a Multi-Angle Tilted Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

S. C. Kang, S. Y. Kim, B. L. Sang, and S. W. Kwon, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photonics Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

J. Laser Micro Nanoeng. (1)

A. Kameyama, M. Katto, and A. Yokotani, “A simplified fabrication technique for tilted fiber Bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

W. Cui, T. Chen, J. Si, F. Chen, and X. Hou, “Femtosecond laser processing of fiber Bragg gratings with photo-induced gradient-index assisted focusing,” J. Micromech. Microeng. 24(7), 075015 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Chem. (1)

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

Laser Photonics Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Meas. Sci. Technol. (2)

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Opt. Commun. (1)

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (2)

K. Markowski and P. Gąsior, “Inscription of the fibre Bragg gratings with femtosecond lasers,” Proc. SPIE 9290, 885–892 (2014).

C. Chen, L. Xiong, A. Jafari, and J. Albert, “Differential sensitivity characteristics of tilted fiber Bragg grating sensors,” Proc. SPIE 6004, 60040B (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of fabricating TFBGs using femtosecond laser irradiation with a phase mask. (b) TFBGs fabricated by tilting the fiber. (c) TFBGs fabricated using our method.
Fig. 2
Fig. 2 Optical microscopic images of TFBGs fabricated at tilt angles of (a) 4.9° and (b) 5.3°.
Fig. 3
Fig. 3 The transmission spectra of the TFBGs with tilt angles of 4.9°, 5.3°, 5.7°, 6.5°, and 8.1°.
Fig. 4
Fig. 4 The transmission spectra of the 5.3° TFBGs fabricated at (a) different exposure times and (b) different laser powers. The inset shows variations of peak loss as a function of exposure time.
Fig. 5
Fig. 5 (a) Evolution of the peak loss measured for the cladding mode at high temperatures. (b) Variations of the peak wavelength versus temperature measured for the Bragg mode, the ghost mode, and the cladding mode, respectively.
Fig. 6
Fig. 6 Refractive index response of the TFBGs with the tilt angles of 5.3° and 8.1°. The inset shows variations of the spectrum of the 5.3° TFBG at different refractive indices.

Tables (1)

Tables Icon

Table 1 Peak losses and saturation times at different laser powers.

Metrics