Abstract

In this work, near-zero-index material boundary properties have been exploited to achieve new electromagnetic functionalities. The extraordinary guiding properties of a cylindrical dielectric rod waveguide surrounded by a thin epsilon-mu-near-zero shell is analyzed and discussed. A closed-form solution for the dispersion equation has been developed, able to model and design such properties at will. Analytical and numerical results will confirm that the use of near-zero cover materials leads to extraordinary properties in terms of field configurations, low attenuation, and bandwidth. The dielectric wire acts as an efficient “waveguide” with great potentials for advance nanocircuit and electronics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants

Lin Zhao, Yijun Feng, Bo Zhu, and Junming Zhao
Opt. Express 27(14) 20073-20083 (2019)

Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling [Invited]

A. M. Mahmoud, I. Liberal, and N. Engheta
Opt. Mater. Express 7(2) 415-424 (2017)

Extremely anisotropic epsilon-near-zero media in waveguide metamaterials

Wenjie Ji, Jie Luo, and Yun Lai
Opt. Express 27(14) 19463-19473 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. O. Goldstone and A. A. Oliner, “Leaky wave antennas I: Rectangular waveguides,” IRE Trans. Antennas Propag. 7(4), 307–319 (1959).
    [Crossref]
  2. L. O. Goldstone and A. A. Oliner, “Leaky wave antennas II: Circular waveguides,” IRE Trans. Antennas Propag. 9(3), 280–290 (1961).
    [Crossref]
  3. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Second Edition, (John Wiley & Sons, New York, 1984).
  4. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [Crossref] [PubMed]
  5. N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).
  6. E. Snitzer, “Cylindrical electric waveguide modes,” J. Opt. Soc. Am. 51(5), 491–498 (1961).
    [Crossref]
  7. R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).
  8. L. Bailin and S. Silver, “Exterior electromagnetic boundary value problems for spheres and cones,” IRE Trans. Antennas Propag. 4(1), 5–16 (1956).
    [Crossref]
  9. A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
    [Crossref]
  10. A. W. Snyder, “Excitation and scattering of modes on a dielectric or optical fiber,” IEEE Trans. Microw. Theory Tech. 17(12), 1138–1144 (1969).
    [Crossref]
  11. B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [Crossref]
  12. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
    [Crossref]
  13. A. Lahav, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided-wave surface-plasmon resonance sensors,” Opt. Lett. 33(21), 2539–2541 (2008).
    [Crossref] [PubMed]
  14. R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
    [Crossref] [PubMed]
  15. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
    [Crossref] [PubMed]
  16. C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
    [Crossref] [PubMed]
  17. L. Wei, H. Yanyi, X. Yong, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  18. M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
    [Crossref]
  19. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  20. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]
  21. I. V. Lindell and A. H. Sihvola, “Electromagnetic boundary and its realization with anisotropic metamaterial,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2 Pt 2), 026604 (2009).
    [Crossref] [PubMed]
  22. I. V. Lindell and A.H. Sihvola, “Realization of the PEMC boundary,” in IEEE Transactions on Antennas and Propagation 53(9), 3012–3018 (2005).
    [Crossref]
  23. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
    [Crossref] [PubMed]
  24. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [Crossref] [PubMed]
  25. A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
    [Crossref] [PubMed]
  26. B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett. 108(19), 193902 (2012).
    [Crossref] [PubMed]
  27. Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
    [Crossref] [PubMed]
  28. R. Liu, C. M. Roberts, Y. Zhong, V. A. Podolskiy, and D. Wasserman, “Epsilon-near-zero photonics wires,” ACS Photonics 3(6), 1045–1052 (2016).
    [Crossref]
  29. V. Rumsey, “Some new forms of Huygens’ principle,” IRE Trans. Antennas Propag. 7(5), 103–116 (1959).
    [Crossref]
  30. A. D. Yaghjian and S. Maci, “Alternative derivation of electromagnetic cloaks and concentrators,” New J. Phys. 10(11), 115022 (2008).
    [Crossref]
  31. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition (John Wiley & Sons, 2005).
  32. C. H. Chandler, “An investigation of dielectric rod as waveguide,” J. Appl. Phys. 20(12), 1188–1192 (1949).
    [Crossref]
  33. D. Marcuse, Theory of Dielectric Optical Waveguide, Academic (Elsevier, 1974).
  34. I. V. Lindell, “Condition for the general ideal boundary,” Microw. Opt. Technol. Lett. 26(1), 61–64 (2000).
    [Crossref]
  35. A. Alù and N. Engheta, “Optical ‘shorting wires’,” Opt. Express 15(21), 13773–13782 (2007).
    [Crossref] [PubMed]
  36. I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
    [Crossref] [PubMed]
  37. A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Theory and simulations of a conformal omni-directional subwavelength metamaterial leaky-wave antenna,” IEEE Trans. Antenn. Propag. 55(6), 1698–1708 (2007).
    [Crossref]
  38. Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
    [Crossref] [PubMed]
  39. J. W. Duncan and R. H. DuHamel, “A technique for controlling the radiation from dielectric rod waveguides,” IRE Trans. Antennas Propag. 5(3), 284–289 (1957).
    [Crossref]
  40. A. M. Mahmoud, I. Liberal, and N. Engheta, “Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling,” Opt. Mater. Express 7(2), 415–424 (2017).
    [Crossref]
  41. A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
    [Crossref] [PubMed]
  42. V. Torres, V. Pacheco-Peña, P. Rodríguez-Ulibarri, M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Terahertz epsilon-near-zero graded-index lens,” Opt. Express 21(7), 9156–9166 (2013).
    [Crossref] [PubMed]
  43. L. La Spada and L. Vegni, “Metamaterial-based wideband electromagnetic wave absorber,” Opt. Express 24(6), 5763–5772 (2016).
    [Crossref] [PubMed]
  44. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  45. CST STUDIO SUITETM, (CST of Europe Inc. 2016), www.cst.com .
  46. D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, Inc., 1986).
  47. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).

2017 (4)

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

A. M. Mahmoud, I. Liberal, and N. Engheta, “Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling,” Opt. Mater. Express 7(2), 415–424 (2017).
[Crossref]

2016 (4)

L. La Spada and L. Vegni, “Metamaterial-based wideband electromagnetic wave absorber,” Opt. Express 24(6), 5763–5772 (2016).
[Crossref] [PubMed]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

R. Liu, C. M. Roberts, Y. Zhong, V. A. Podolskiy, and D. Wasserman, “Epsilon-near-zero photonics wires,” ACS Photonics 3(6), 1045–1052 (2016).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

2014 (1)

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

2013 (2)

V. Torres, V. Pacheco-Peña, P. Rodríguez-Ulibarri, M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Terahertz epsilon-near-zero graded-index lens,” Opt. Express 21(7), 9156–9166 (2013).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

2012 (1)

B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett. 108(19), 193902 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

I. V. Lindell and A. H. Sihvola, “Electromagnetic boundary and its realization with anisotropic metamaterial,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2 Pt 2), 026604 (2009).
[Crossref] [PubMed]

2008 (2)

A. Lahav, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided-wave surface-plasmon resonance sensors,” Opt. Lett. 33(21), 2539–2541 (2008).
[Crossref] [PubMed]

A. D. Yaghjian and S. Maci, “Alternative derivation of electromagnetic cloaks and concentrators,” New J. Phys. 10(11), 115022 (2008).
[Crossref]

2007 (4)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Theory and simulations of a conformal omni-directional subwavelength metamaterial leaky-wave antenna,” IEEE Trans. Antenn. Propag. 55(6), 1698–1708 (2007).
[Crossref]

M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
[Crossref]

A. Alù and N. Engheta, “Optical ‘shorting wires’,” Opt. Express 15(21), 13773–13782 (2007).
[Crossref] [PubMed]

2005 (3)

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

L. Wei, H. Yanyi, X. Yong, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[Crossref] [PubMed]

2000 (1)

I. V. Lindell, “Condition for the general ideal boundary,” Microw. Opt. Technol. Lett. 26(1), 61–64 (2000).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

1983 (1)

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

1971 (1)

1969 (2)

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

A. W. Snyder, “Excitation and scattering of modes on a dielectric or optical fiber,” IEEE Trans. Microw. Theory Tech. 17(12), 1138–1144 (1969).
[Crossref]

1961 (2)

E. Snitzer, “Cylindrical electric waveguide modes,” J. Opt. Soc. Am. 51(5), 491–498 (1961).
[Crossref]

L. O. Goldstone and A. A. Oliner, “Leaky wave antennas II: Circular waveguides,” IRE Trans. Antennas Propag. 9(3), 280–290 (1961).
[Crossref]

1959 (2)

L. O. Goldstone and A. A. Oliner, “Leaky wave antennas I: Rectangular waveguides,” IRE Trans. Antennas Propag. 7(4), 307–319 (1959).
[Crossref]

V. Rumsey, “Some new forms of Huygens’ principle,” IRE Trans. Antennas Propag. 7(5), 103–116 (1959).
[Crossref]

1957 (1)

J. W. Duncan and R. H. DuHamel, “A technique for controlling the radiation from dielectric rod waveguides,” IRE Trans. Antennas Propag. 5(3), 284–289 (1957).
[Crossref]

1956 (1)

L. Bailin and S. Silver, “Exterior electromagnetic boundary value problems for spheres and cones,” IRE Trans. Antennas Propag. 4(1), 5–16 (1956).
[Crossref]

1949 (1)

C. H. Chandler, “An investigation of dielectric rod as waveguide,” J. Appl. Phys. 20(12), 1188–1192 (1949).
[Crossref]

Abdulhalim, I.

Albert, J.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Optical ‘shorting wires’,” Opt. Express 15(21), 13773–13782 (2007).
[Crossref] [PubMed]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Theory and simulations of a conformal omni-directional subwavelength metamaterial leaky-wave antenna,” IEEE Trans. Antenn. Propag. 55(6), 1698–1708 (2007).
[Crossref]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Amnon, Y.

L. Wei, H. Yanyi, X. Yong, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Auslender, M.

Badugu, R.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Bailin, L.

L. Bailin and S. Silver, “Exterior electromagnetic boundary value problems for spheres and cones,” IRE Trans. Antennas Propag. 4(1), 5–16 (1956).
[Crossref]

Banerji, S.

Beruete, M.

Bilotti, F.

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Theory and simulations of a conformal omni-directional subwavelength metamaterial leaky-wave antenna,” IEEE Trans. Antenn. Propag. 55(6), 1698–1708 (2007).
[Crossref]

Booksh, K. S.

Caucheteur, C.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Chandler, C. H.

C. H. Chandler, “An investigation of dielectric rod as waveguide,” J. Appl. Phys. 20(12), 1188–1192 (1949).
[Crossref]

Chen, J.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Della Giovampaola, C.

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

DuHamel, R. H.

J. W. Duncan and R. H. DuHamel, “A technique for controlling the radiation from dielectric rod waveguides,” IRE Trans. Antennas Propag. 5(3), 284–289 (1957).
[Crossref]

Duncan, J. W.

J. W. Duncan and R. H. DuHamel, “A technique for controlling the radiation from dielectric rod waveguides,” IRE Trans. Antennas Propag. 5(3), 284–289 (1957).
[Crossref]

Edwards, B.

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett. 108(19), 193902 (2012).
[Crossref] [PubMed]

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

A. M. Mahmoud, I. Liberal, and N. Engheta, “Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling,” Opt. Mater. Express 7(2), 415–424 (2017).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

V. Torres, V. Pacheco-Peña, P. Rodríguez-Ulibarri, M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Terahertz epsilon-near-zero graded-index lens,” Opt. Express 21(7), 9156–9166 (2013).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett. 108(19), 193902 (2012).
[Crossref] [PubMed]

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Theory and simulations of a conformal omni-directional subwavelength metamaterial leaky-wave antenna,” IEEE Trans. Antenn. Propag. 55(6), 1698–1708 (2007).
[Crossref]

A. Alù and N. Engheta, “Optical ‘shorting wires’,” Opt. Express 15(21), 13773–13782 (2007).
[Crossref] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

Goldstone, L. O.

L. O. Goldstone and A. A. Oliner, “Leaky wave antennas II: Circular waveguides,” IRE Trans. Antennas Propag. 9(3), 280–290 (1961).
[Crossref]

L. O. Goldstone and A. A. Oliner, “Leaky wave antennas I: Rectangular waveguides,” IRE Trans. Antennas Propag. 7(4), 307–319 (1959).
[Crossref]

Guan, B.-O.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Guo, T.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

He, S.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

Jin, Y.

Kim, Y. C.

La Spada, L.

Lahav, A.

Lakowicz, J. R.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Li, Y.

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

A. M. Mahmoud, I. Liberal, and N. Engheta, “Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling,” Opt. Mater. Express 7(2), 415–424 (2017).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Lindell, I. V.

I. V. Lindell and A. H. Sihvola, “Electromagnetic boundary and its realization with anisotropic metamaterial,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2 Pt 2), 026604 (2009).
[Crossref] [PubMed]

I. V. Lindell, “Condition for the general ideal boundary,” Microw. Opt. Technol. Lett. 26(1), 61–64 (2000).
[Crossref]

Liu, F.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Liu, R.

R. Liu, C. M. Roberts, Y. Zhong, V. A. Podolskiy, and D. Wasserman, “Epsilon-near-zero photonics wires,” ACS Photonics 3(6), 1045–1052 (2016).
[Crossref]

Loncar, M.

M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
[Crossref]

Lunstrom, I.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Maci, S.

A. D. Yaghjian and S. Maci, “Alternative derivation of electromagnetic cloaks and concentrators,” New J. Phys. 10(11), 115022 (2008).
[Crossref]

Mahmoud, A. M.

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

A. M. Mahmoud, I. Liberal, and N. Engheta, “Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling,” Opt. Mater. Express 7(2), 415–424 (2017).
[Crossref]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

Ming, H.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Navarro-Cía, M.

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Oliner, A. A.

L. O. Goldstone and A. A. Oliner, “Leaky wave antennas II: Circular waveguides,” IRE Trans. Antennas Propag. 9(3), 280–290 (1961).
[Crossref]

L. O. Goldstone and A. A. Oliner, “Leaky wave antennas I: Rectangular waveguides,” IRE Trans. Antennas Propag. 7(4), 307–319 (1959).
[Crossref]

Pacheco-Peña, V.

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Peng, W.

Podolskiy, V. A.

R. Liu, C. M. Roberts, Y. Zhong, V. A. Podolskiy, and D. Wasserman, “Epsilon-near-zero photonics wires,” ACS Photonics 3(6), 1045–1052 (2016).
[Crossref]

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Reginald, K. L.

L. Wei, H. Yanyi, X. Yong, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Roberts, C. M.

R. Liu, C. M. Roberts, Y. Zhong, V. A. Podolskiy, and D. Wasserman, “Epsilon-near-zero photonics wires,” ACS Photonics 3(6), 1045–1052 (2016).
[Crossref]

Rodríguez-Ulibarri, P.

Rumsey, V.

V. Rumsey, “Some new forms of Huygens’ principle,” IRE Trans. Antennas Propag. 7(5), 103–116 (1959).
[Crossref]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Sihvola, A. H.

I. V. Lindell and A. H. Sihvola, “Electromagnetic boundary and its realization with anisotropic metamaterial,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2 Pt 2), 026604 (2009).
[Crossref] [PubMed]

Silver, S.

L. Bailin and S. Silver, “Exterior electromagnetic boundary value problems for spheres and cones,” IRE Trans. Antennas Propag. 4(1), 5–16 (1956).
[Crossref]

Snitzer, E.

Snyder, A. W.

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

A. W. Snyder, “Excitation and scattering of modes on a dielectric or optical fiber,” IEEE Trans. Microw. Theory Tech. 17(12), 1138–1144 (1969).
[Crossref]

Sorolla, M.

Tien, P. K.

Torres, V.

Vegni, L.

L. La Spada and L. Vegni, “Metamaterial-based wideband electromagnetic wave absorber,” Opt. Express 24(6), 5763–5772 (2016).
[Crossref] [PubMed]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Theory and simulations of a conformal omni-directional subwavelength metamaterial leaky-wave antenna,” IEEE Trans. Antenn. Propag. 55(6), 1698–1708 (2007).
[Crossref]

Wang, P.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Wang, R.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Wang, Y.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Wasserman, D.

R. Liu, C. M. Roberts, Y. Zhong, V. A. Podolskiy, and D. Wasserman, “Epsilon-near-zero photonics wires,” ACS Photonics 3(6), 1045–1052 (2016).
[Crossref]

Wei, L.

L. Wei, H. Yanyi, X. Yong, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Wen, X.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Xia, H.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Yaghjian, A. D.

A. D. Yaghjian and S. Maci, “Alternative derivation of electromagnetic cloaks and concentrators,” New J. Phys. 10(11), 115022 (2008).
[Crossref]

Yang, E.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Yanyi, H.

L. Wei, H. Yanyi, X. Yong, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

Yong, X.

L. Wei, H. Yanyi, X. Yong, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Zang, T.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Zhang, D.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Zhong, Y.

R. Liu, C. M. Roberts, Y. Zhong, V. A. Podolskiy, and D. Wasserman, “Epsilon-near-zero photonics wires,” ACS Photonics 3(6), 1045–1052 (2016).
[Crossref]

Zhu, L.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Zou, G.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

R. Liu, C. M. Roberts, Y. Zhong, V. A. Podolskiy, and D. Wasserman, “Epsilon-near-zero photonics wires,” ACS Photonics 3(6), 1045–1052 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Wei, H. Yanyi, X. Yong, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Theory and simulations of a conformal omni-directional subwavelength metamaterial leaky-wave antenna,” IEEE Trans. Antenn. Propag. 55(6), 1698–1708 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

A. W. Snyder, “Excitation and scattering of modes on a dielectric or optical fiber,” IEEE Trans. Microw. Theory Tech. 17(12), 1138–1144 (1969).
[Crossref]

IRE Trans. Antennas Propag. (5)

L. Bailin and S. Silver, “Exterior electromagnetic boundary value problems for spheres and cones,” IRE Trans. Antennas Propag. 4(1), 5–16 (1956).
[Crossref]

L. O. Goldstone and A. A. Oliner, “Leaky wave antennas I: Rectangular waveguides,” IRE Trans. Antennas Propag. 7(4), 307–319 (1959).
[Crossref]

L. O. Goldstone and A. A. Oliner, “Leaky wave antennas II: Circular waveguides,” IRE Trans. Antennas Propag. 9(3), 280–290 (1961).
[Crossref]

J. W. Duncan and R. H. DuHamel, “A technique for controlling the radiation from dielectric rod waveguides,” IRE Trans. Antennas Propag. 5(3), 284–289 (1957).
[Crossref]

V. Rumsey, “Some new forms of Huygens’ principle,” IRE Trans. Antennas Propag. 7(5), 103–116 (1959).
[Crossref]

J. Appl. Phys. (1)

C. H. Chandler, “An investigation of dielectric rod as waveguide,” J. Appl. Phys. 20(12), 1188–1192 (1949).
[Crossref]

J. Opt. Soc. Am. (1)

Microw. Opt. Technol. Lett. (1)

I. V. Lindell, “Condition for the general ideal boundary,” Microw. Opt. Technol. Lett. 26(1), 61–64 (2000).
[Crossref]

Nat. Commun. (3)

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

New J. Phys. (1)

A. D. Yaghjian and S. Maci, “Alternative derivation of electromagnetic cloaks and concentrators,” New J. Phys. 10(11), 115022 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

I. V. Lindell and A. H. Sihvola, “Electromagnetic boundary and its realization with anisotropic metamaterial,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2 Pt 2), 026604 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett. 108(19), 193902 (2012).
[Crossref] [PubMed]

Sci. Adv. (1)

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Science (2)

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

Sens. Actuat. B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Other (10)

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Second Edition, (John Wiley & Sons, New York, 1984).

N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).

R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).

I. V. Lindell and A.H. Sihvola, “Realization of the PEMC boundary,” in IEEE Transactions on Antennas and Propagation 53(9), 3012–3018 (2005).
[Crossref]

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

CST STUDIO SUITETM, (CST of Europe Inc. 2016), www.cst.com .

D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, Inc., 1986).

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).

D. Marcuse, Theory of Dielectric Optical Waveguide, Academic (Elsevier, 1974).

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition (John Wiley & Sons, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Dielectric rod (εd = 38, µd = µ0); (b) Folded-Dielectric Rod (εc = 2.56, µc = µ0); (c) Dispersion curves for: HEM (black), TM (blue), TE (red), TM for ENZ cover (cyan), TE01 (red, dot) and TM01 (blue dot) for EMNZ cover; (d) Ratio of βz0, for first three surface-wave modes on the dielectric rod.
Fig. 2
Fig. 2 Field Configurations for Dielectric Rod for (a) Electric Field (HEM, TM); (b) Electric Field (TM). Poynting vector for (c) HEM and (d) TE and TM. Values used: a = λ/20, l = 2λ, εd = 38, µd = µ0.
Fig. 3
Fig. 3 Field Configurations for Dielectric Rod -ENZ cover for (a) Electric Field (HEM); (b) Electric Field (TM); (c) Magnetic Field (TE). (d) Poynting vector. Values used: a = λ/20, l = 2λ, εd = 38, µd = µ0, εc = 0.01, µc = 1.
Fig. 4
Fig. 4 Field Configurations for Dielectric Rod -EMNZ cover for (a) Electric Field (HEM/TM); (b) Electric Field (TE); (c) Poynting vector. Values used: a = λ/20, l = 2λ, εd = 10, µd = µ0, εc = 0.01, µc = 0.01.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P z =[ a f 1 ( ρ )+b f 2 ( ρ ) ][ c g 1 ( φ )+d g 2 ( φ ) ][ e h 1 ( z )+f h 2 ( z ) ]
{ E ρ =( 1 ε 1 ρ φ P TE +j 1 ωμε ρ φ P TM ) E φ = ( 1 ε ρ P TE j 1 ωμε 1 ρ φ z P TM ) E z = ( j 1 ωμε z 2 +β ) P TM { H ρ =j 1 ωμε ρ z P TE + 1 μ 1 ρ φ P TM H φ =( j 1 ωμε 1 ρ φ z P TE + 1 μ ρ P TM ) H z =( j 1 ωμε z 2 +β ) P TE
{ n×E=0 nD=0 det| ε d ε c E ρ d E ρ c ( f 1 ( ρ ) ) E ρ c ( f 2 ( ρ ) ) 0 E φ d E φ c ( f 1 ( ρ ) ) E φ c ( f 2 ( ρ ) ) 0 0 E ρ c ( f 1 ( ρ ) ) E ρ c ( f 2 ( ρ ) ) ε 0 ε c E ρ 0 0 E φ c ( f 1 ( ρ ) ) E φ c ( f 2 ( ρ ) ) E φ 0 | TM J 0 ( χ 0n ) χ 0n + K 0 ( ξ 0n ) J 0 ( χ 0n ) ε d ξ 0n K 0 ( ξ 0n ) = J 1 ( χ 0n ) χ 0n K 1 ( ξ 0n ) J 0 ( χ 0n ) ε d ξ 0n K 0 ( ξ 0n )
{ n×H=0 nD=0 det| ε d ε c E ρ d E ρ c ( f 1 ( ρ ) ) E ρ c ( f 2 ( ρ ) ) 0 H φ,z d H φ,z c ( f 1 ( ρ ) ) H φ,z c ( f 2 ( ρ ) ) 0 0 E ρ c ( f 1 ( ρ ) ) E ρ c ( f 2 ( ρ ) ) ε 0 ε c E ρ 0 0 H φ,z c ( f 1 ( ρ ) ) H φ,z c ( f 2 ( ρ ) ) H φ,z 0 | TM det| J 1 ( β 0 a ) ε c ε d J 1 ( β d a ) ε c ε d Y 1 ( β d a ) 0 β d J 0 ( β 0 a ) β c J 0 ( β c a ) β c Y 0 ( β c a ) 0 0 ε c ε 0 J 1 ( β d b ) ε c ε 0 Y 1 ( β d b ) H 1 (2) ( β 0 b ) 0 β c J 0 ( β c b ) β c Y 0 ( β c b ) H 0 (2) ( β 0 b ) |=0
{ n×( H+ME )=0 n( DMB )=0 det| E ρ M μ d ε d H ρ H φ M E φ | TM M( 1 μ d ε d ) J 0 ( χ ) J 1 ( χ )=0

Metrics