Abstract

We present a broadband tunable circular polarization converter composed of a single graphene sheet patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground plane. It can convert a linearly polarized wave into a circularly polarized wave in reflection mode. The polarization converter can be dynamically tuned by varying the Fermi energy of the single graphene sheet. Furthermore, the 7-layer graphene acting as a ground plane can modulate the phase of its reflected wave by controlling the Femi energy, which provides constructive interference condition at the surface of the single graphene sheet in a broad bandwidth and therefore significantly broadens the tunable bandwidth of the proposed polarization converter.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Triple-band cross-polarization converter based on an ultra-thin graphene-integrated metasurface

Zhifei Yao, Yueke Wang, Mengjia Lu, and Chunyang Zhang
J. Opt. Soc. Am. B 36(1) 7-11 (2019)

Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials

Fang Zeng, Longfang Ye, Li Li, Zhihui Wang, Wei Zhao, and Yong Zhang
Opt. Express 27(23) 33826-33839 (2019)

Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence

Vinit Singh Yadav, Sambit Kumar Ghosh, Somak Bhattacharyya, and Santanu Das
Appl. Opt. 57(29) 8720-8726 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
    [Crossref] [PubMed]
  2. N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
    [Crossref] [PubMed]
  3. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
    [Crossref]
  4. F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep. 6(1), 34994 (2016).
    [Crossref] [PubMed]
  5. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
    [Crossref] [PubMed]
  6. X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photon. Technol. Lett. 28(21), 2399–2402 (2016).
    [Crossref]
  7. Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  8. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  9. T. Guo and C. Argyropoulos, “Broadband polarizers based on graphene metasurfaces,” Opt. Lett. 41(23), 5592–5595 (2016).
    [Crossref] [PubMed]
  10. J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
    [Crossref]
  11. N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, “Mid-infrared tunable magnetic response in graphene-based diabolo nanoantennas,” Carbon 94, 501–506 (2015).
    [Crossref]
  12. Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
    [Crossref] [PubMed]
  13. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  14. J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).
  15. C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
    [Crossref] [PubMed]
  16. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  17. I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
    [Crossref]
  18. Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
    [Crossref]
  19. X. Gao, X. Han, W. Cao, H. O. Li, H. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
    [Crossref]
  20. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [Crossref] [PubMed]

2016 (6)

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep. 6(1), 34994 (2016).
[Crossref] [PubMed]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photon. Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
[Crossref] [PubMed]

T. Guo and C. Argyropoulos, “Broadband polarizers based on graphene metasurfaces,” Opt. Lett. 41(23), 5592–5595 (2016).
[Crossref] [PubMed]

2015 (6)

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref] [PubMed]

X. Gao, X. Han, W. Cao, H. O. Li, H. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).

N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, “Mid-infrared tunable magnetic response in graphene-based diabolo nanoantennas,” Carbon 94, 501–506 (2015).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

2014 (2)

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

2013 (3)

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

2012 (1)

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2001 (1)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref] [PubMed]

Ahn, K. J.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Argyropoulos, C.

Arigong, B.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).

Bae, S.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Baek, I. H.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Bai, J.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Beck, M.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Belkin, M. A.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Cao, W.

X. Gao, X. Han, W. Cao, H. O. Li, H. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Chen, S.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Cheng, H.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Choi, J. W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Cui, T. J.

X. Gao, X. Han, W. Cao, H. O. Li, H. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Dabidian, N.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Ding, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).

Du, L.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Dutta-Gupta, S.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Faist, J.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Fallahazad, B.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Fan, Y.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Feng, Y.

Fu, W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Gao, X.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photon. Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

X. Gao, X. Han, W. Cao, H. O. Li, H. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Gu, J.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Guo, J.

Guo, T.

Han, J.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Han, X.

X. Gao, X. Han, W. Cao, H. O. Li, H. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

He, D.

Hong, B. H.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Hu, F.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Jeong, Y. U.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Jiang, T.

Jiang, Y.

Jin, M.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Kang, B. J.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Khanikaev, A.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Kholmanov, I.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Koschny, T.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Lai, K.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Lee, J.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Lee, K.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Li, H. O.

X. Gao, X. Han, W. Cao, H. O. Li, H. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Li, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, Q.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Li, W.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Li, Z.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Lin, Y.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).

Ling, F.

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep. 6(1), 34994 (2016).
[Crossref] [PubMed]

Liu, W.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Liu, Z.

Lu, F.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Luo, Y.

Ma, H.

X. Gao, X. Han, W. Cao, H. O. Li, H. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Maissen, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Park, H. G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Pu, Y.

Qiao, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photon. Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Ren, H.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).

Ren, Z.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Rotermund, F.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Scalari, G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Schönenberger, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Shao, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).

Shen, N.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shvets, G.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Singh, R.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Song, Q.

N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, “Mid-infrared tunable magnetic response in graphene-based diabolo nanoantennas,” Carbon 94, 501–506 (2015).
[Crossref]

Soukoulis, C. M.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Sun, S.

N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, “Mid-infrared tunable magnetic response in graphene-based diabolo nanoantennas,” Carbon 94, 501–506 (2015).
[Crossref]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref] [PubMed]

Tian, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Tian, Z.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Trendafilov, S.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Tutuc, E.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Valmorra, F.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Wen, L.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photon. Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Xiao, S.

N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, “Mid-infrared tunable magnetic response in graphene-based diabolo nanoantennas,” Carbon 94, 501–506 (2015).
[Crossref]

Xie, B.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xu, J.

Xu, X.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Yang, C.

Yang, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photon. Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yao, G.

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep. 6(1), 34994 (2016).
[Crossref] [PubMed]

Yao, J.

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep. 6(1), 34994 (2016).
[Crossref] [PubMed]

Yeom, D.-I.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Yi, N.

N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, “Mid-infrared tunable magnetic response in graphene-based diabolo nanoantennas,” Carbon 94, 501–506 (2015).
[Crossref]

Yu, P.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yu, X.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photon. Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Zhang, H.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).

Zhang, W.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Zhang, X.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zhao, J.

Zhao, P.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Zheng, X.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Zhou, M.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).

Zhou, Y.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Zhu, B.

ACS Photonics (1)

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Adv. Opt. Mater. (1)

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Polarization: Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Appl. Phys. Lett. (3)

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013).
[Crossref]

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Carbon (1)

N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, “Mid-infrared tunable magnetic response in graphene-based diabolo nanoantennas,” Carbon 94, 501–506 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photon. Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

X. Gao, X. Han, W. Cao, H. O. Li, H. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Nano Lett. (2)

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Phys. Rev. Lett. (1)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Tunable graphene-based dual-frequency cross polarization converters,” Proc. SPIE 103, 223102 (2015).

Sci. Rep. (1)

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep. 6(1), 34994 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed polarization converter consisting of a graphene metasurface patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground. (b) Front View of the metasurface unit cell. The Femi energy of graphene is tuned by applying gate-voltages to the 7-layer graphene (V1) and to the graphene-based metasurface (V2).
Fig. 2
Fig. 2 (a) and (b) The calculated conductivities plotted as a function of frequency for different N when the relaxation time and the Femi energy are fixed to 2 ps and 0 eV, respectively. (c) and (d) The theoretically calculated conductivities of 7-layer graphene for different EF2 when the relaxation time is fixed to 2 ps.
Fig. 3
Fig. 3 (a) The simulated amplitude and phase difference of R uu and R vu for the proposed polarization converter when a u-polarized incident wave is used. (b) The simulated reflection amplitude and phase difference for R xx and R yy when the proposed polarization converter is excited with x- and y-polarized wave, respectively. (c) The simulated amplitude and phase difference of R uu and R vu for the polarization converter backed with metallic ground when a u-polarized incident wave is used. The Femi energy of graphene is E F1 = E F2 =0.4eV.
Fig. 4
Fig. 4 Simulated reflection coefficients of a 7-layer graphene on silicon substrate.
Fig. 5
Fig. 5 (a) The Calculated AR verus different Femi energy for the devices backed with metallic ground. (b) The Calculated AR verus different Femi energy for the proposed polarization converter. E F1 denotes the Femi energy of the single graphene patterned with butterfly-shaped holes and E F2 is the Femi energy of the 7-layer graphene ground.
Fig. 6
Fig. 6 (a) The diagrammatic sketch of the EM wave path in the proposed polarized device. (b) The simulated additional phase θ produced by a 7-layer graphene with different E F . (c) The phase θ plotted as a function of Femi energy for a fixed frequency (f = 0.6 THz).

Tables (1)

Tables Icon

Table 1 Comparison with other reflective graphene-based polarization converters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ s = σ intra (ω, μ c ,Γ,T)+ σ inter (ω, μ c ,Γ,T) σ intra (ω, μ c ,Γ,T)=j e 2 k B T π 2 (ωj2Γ) ( μ c k B T +2ln( e μ c k B T +1)), σ inter (ω, μ c ,Γ,T) j e 2 4π ln( 2| μ c |(ωj2Γ) 2| μ c |+(ωj2Γ) )
σ total (N) =[( M 1 M 2 )exp(i k s t gra )+( M 3 M 4 )exp(i k s t gra )] ( n 1 + z 0 σ s )( n 3 + z 0 σ s ) 2 z 0 ε s +[( M 1 + M 2 )exp(i k s t gra )+( M 3 + M 4 )exp(i k s t gra )] n 1 + z 0 σ s 2 z 0 +[( M 1 M 2 )exp(i k s t gra )( M 3 M 4 )exp(i k s t gra )] n 3 + z 0 σ s 2 z 0 , +[( M 1 M 2 )exp(i k s t gra )( M 3 M 4 )exp(i k s t gra )] ε s 2 z 0 n 1 + n 3 z 0
( M 1 M 2 M 3 M 4 )= ( (1+ z 0 σ s 2 ε s )exp(i k s t gra ) z 0 σ s 2 ε s exp(i k s t gra ) z 0 σ s 2 ε s exp(i k s t gra ) (1 z 0 σ s 2 ε s )exp(i k s t gra ) ) N2 .
AR=10 log 10 ( E u cosα+ E v cosφsinα) 2 + E v 2 sin 2 φ sin 2 α ( E u cosα+ E v cosφsinα) 2 E v 2 sin 2 φ sin 2 α , α= 1 2 tan 1 ( 2 E u E v cosφ E u 2 E v 2 )
Δφ=2π n si h/ λ 0 +θ,

Metrics