Abstract

We report a Yb3+ heavily doped photonic crystal fiber with 30 μm core diameter manufactured for the first time by an alternative technique. Silica core rods with a diameter of 3 mm and a length of 280 mm were prepared by the sodium-borosilicate glass phase-separation technology. The measurements show that the fiber has an Yb3+ concentration of 22810 ppm by weight, and a resultant absorption of approximately 8.5 dB/m at 976 nm. The Yb3+ ions are distributed throughout the fiber core with an excellent homogeneity. The laser performance demonstrates a high slope efficiency of 64.5% for laser emission at 1033.4 nm and a low power threshold of 3 W within a short fiber length of 1 m. This novel approach provides an alternative means of preparing large active silica rods with high doping levels and excellent material homogeneity for large mode area fibers with complex designs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Yb3+-doped large-mode-area photonic crystal fiber for fiber lasers prepared by laser sintering technology

Yun Chen, Nan Zhao, Jiantao Liu, Yang Xiao, Mengmeng Zhu, Ke Liu, Guiyao Zhou, Zhiyun Hou, Changming Xia, Yi Zheng, and Zhenqiang Chen
Opt. Mater. Express 9(3) 1356-1364 (2019)

Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber

Shikai Wang, Wenbin Xu, Fan Wang, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 7(6) 2012-2022 (2017)

Manipulating refractive index, homogeneity and spectroscopy of Yb3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers

Fan Wang, Lili Hu, Wenbin Xu, Meng Wang, Suya Feng, Jinjun Ren, Lei Zhang, Danping Chen, Nadège Ollier, Guojun Gao, Chunlei Yu, and Shikai Wang
Opt. Express 25(21) 25960-25969 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Carter and E. Li, “Recent progress in high-power fiber lasers for high-power and high-quality material processing applications,” Proc. SPIE 6344, 63440F (2006).
    [Crossref]
  2. S. Yamashita, T. Yoshida, S. Y. Set, P. Polynkin, and N. Peyghambarian, “Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes,” Proc. SPIE 6453, 64531Y (2007).
    [Crossref]
  3. C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
    [Crossref]
  4. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17(19), 16716–16721 (2009).
    [Crossref] [PubMed]
  5. P. Polynkin, A. Polynkin, D. Panasenko, N. Peyghambarian, M. Mansuripur, and J. Moloney, “All-fiber passively mode-locked laser oscillator at 1.5 µm with watts-level average output power and high repetition rate,” Opt. Lett. 31(5), 592–594 (2006).
    [Crossref] [PubMed]
  6. T. Liu, Z. M. Yang, and S. H. Xu, “3-Dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion,” Opt. Express 17(1), 235–247 (2009).
    [Crossref] [PubMed]
  7. H. Kubota and M. Nakazawa, “Numerical analyses of ultrashort fiber laser with optical nonlinear effect,” Technical Report of IEICE. 100, 61–66 (2000).
  8. W. Xu, Z. Lin, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “50 μm core diameter Yb3+Al3+/F− codoped silica fiber with M2<1.1 beam quality,” Opt. Lett. 41(3), 504–507 (2016).
    [Crossref] [PubMed]
  9. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  10. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
    [Crossref] [PubMed]
  11. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
    [Crossref]
  12. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10(7), 341–348 (2002).
    [Crossref] [PubMed]
  13. M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
    [Crossref] [PubMed]
  14. K. Kajihara, “Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses,” J. Asian Ceram. Soc. 1(2), 121–133 (2013).
    [Crossref]
  15. M. Devautour, P. Roy, S. Février, C. Pedrido, F. Sandoz, and V. Romano, “Nonchemical-vapor-deposition process for fabrication of highly efficient Yb-doped large core fibers,” Appl. Opt. 48(31), G139–G142 (2009).
    [Crossref] [PubMed]
  16. D. Darwich, R. Dauliat, R. Jamier, A. Benoit, J. L. Auguste, S. Grimm, J. Kobelke, A. Schwuchow, K. Schuster, and P. Roy, “50.4% slope efficiency thulium-doped large-mode-area fiber laser fabricated by powder technology,” Opt. Lett. 41(2), 384–387 (2016).
    [Crossref] [PubMed]
  17. Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
    [Crossref] [PubMed]
  18. L. Yang, M. Yamashita, and T. Akai, “Green and red high-silica luminous glass suitable for near-ultraviolet excitation,” Opt. Express 17(8), 6688–6695 (2009).
    [Crossref] [PubMed]
  19. Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
    [Crossref]
  20. L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
    [Crossref]
  21. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60(2), 309–319 (1938).
    [Crossref]
  22. S. Liu, H. Li, Y. Tang, and L. Hu, “Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the Sol-Gel method,” Chin. Opt. Lett. 10(8), 42–45 (2012).

2016 (3)

2015 (1)

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

2013 (1)

K. Kajihara, “Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses,” J. Asian Ceram. Soc. 1(2), 121–133 (2013).
[Crossref]

2012 (1)

S. Liu, H. Li, Y. Tang, and L. Hu, “Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the Sol-Gel method,” Chin. Opt. Lett. 10(8), 42–45 (2012).

2011 (2)

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

2009 (4)

2008 (1)

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

2007 (1)

S. Yamashita, T. Yoshida, S. Y. Set, P. Polynkin, and N. Peyghambarian, “Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes,” Proc. SPIE 6453, 64531Y (2007).
[Crossref]

2006 (2)

2003 (2)

2002 (1)

2000 (1)

H. Kubota and M. Nakazawa, “Numerical analyses of ultrashort fiber laser with optical nonlinear effect,” Technical Report of IEICE. 100, 61–66 (2000).

1999 (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[Crossref]

1938 (1)

S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60(2), 309–319 (1938).
[Crossref]

Akai, T.

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

L. Yang, M. Yamashita, and T. Akai, “Green and red high-silica luminous glass suitable for near-ultraviolet excitation,” Opt. Express 17(8), 6688–6695 (2009).
[Crossref] [PubMed]

Auguste, J. L.

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[Crossref]

Benoit, A.

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[Crossref]

Broeng, J.

Brunauer, S.

S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60(2), 309–319 (1938).
[Crossref]

Bushong, E. J.

Carlson, C.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Carter, A.

A. Carter and E. Li, “Recent progress in high-power fiber lasers for high-power and high-quality material processing applications,” Proc. SPIE 6344, 63440F (2006).
[Crossref]

Chen, D.

Chu, Y.

Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
[Crossref] [PubMed]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

Coleman, J.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Dai, N.

Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
[Crossref] [PubMed]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

Darwich, D.

Dauliat, R.

Devautour, M.

Dragic, P.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Emmett, P. H.

S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60(2), 309–319 (1938).
[Crossref]

Eschrich, T.

Feng, S.

Février, S.

Graf, B.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Grimm, S.

Hu, L.

W. Xu, Z. Lin, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “50 μm core diameter Yb3+Al3+/F− codoped silica fiber with M2<1.1 beam quality,” Opt. Lett. 41(3), 504–507 (2016).
[Crossref] [PubMed]

S. Liu, H. Li, Y. Tang, and L. Hu, “Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the Sol-Gel method,” Chin. Opt. Lett. 10(8), 42–45 (2012).

Hu, X.

Iliew, R.

Jakobsen, C.

Jamier, R.

Jiang, Z.

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

Just, F.

Kajihara, K.

K. Kajihara, “Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses,” J. Asian Ceram. Soc. 1(2), 121–133 (2013).
[Crossref]

Kobelke, J.

Kubota, H.

H. Kubota and M. Nakazawa, “Numerical analyses of ultrashort fiber laser with optical nonlinear effect,” Technical Report of IEICE. 100, 61–66 (2000).

Langner, A.

Lederer, F.

Leich, M.

Li, E.

A. Carter and E. Li, “Recent progress in high-power fiber lasers for high-power and high-quality material processing applications,” Proc. SPIE 6344, 63440F (2006).
[Crossref]

Li, H.

Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
[Crossref] [PubMed]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

S. Liu, H. Li, Y. Tang, and L. Hu, “Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the Sol-Gel method,” Chin. Opt. Lett. 10(8), 42–45 (2012).

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

Li, J.

Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
[Crossref] [PubMed]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

Liao, L.

Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
[Crossref] [PubMed]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

Limpert, J.

Lin, A.

Lin, Z.

Liu, S.

S. Liu, H. Li, Y. Tang, and L. Hu, “Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the Sol-Gel method,” Chin. Opt. Lett. 10(8), 42–45 (2012).

Liu, T.

Liu, Z.

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

Ma, Y.

Mansuripur, M.

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[Crossref]

Moloney, J.

Mortensen, N. A.

Nakazawa, M.

H. Kubota and M. Nakazawa, “Numerical analyses of ultrashort fiber laser with optical nonlinear effect,” Technical Report of IEICE. 100, 61–66 (2000).

Nolte, S.

Panasenko, D.

Pedrido, C.

Peng, J.

Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
[Crossref] [PubMed]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

Petersson, A.

Peyghambarian, N.

S. Yamashita, T. Yoshida, S. Y. Set, P. Polynkin, and N. Peyghambarian, “Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes,” Proc. SPIE 6453, 64531Y (2007).
[Crossref]

P. Polynkin, A. Polynkin, D. Panasenko, N. Peyghambarian, M. Mansuripur, and J. Moloney, “All-fiber passively mode-locked laser oscillator at 1.5 µm with watts-level average output power and high repetition rate,” Opt. Lett. 31(5), 592–594 (2006).
[Crossref] [PubMed]

Polynkin, A.

Polynkin, P.

S. Yamashita, T. Yoshida, S. Y. Set, P. Polynkin, and N. Peyghambarian, “Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes,” Proc. SPIE 6453, 64531Y (2007).
[Crossref]

P. Polynkin, A. Polynkin, D. Panasenko, N. Peyghambarian, M. Mansuripur, and J. Moloney, “All-fiber passively mode-locked laser oscillator at 1.5 µm with watts-level average output power and high repetition rate,” Opt. Lett. 31(5), 592–594 (2006).
[Crossref] [PubMed]

Price, R.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Romano, V.

Roy, P.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Sandoz, F.

Schötz, G.

Schreiber, T.

Schuster, K.

Schwuchow, A.

Set, S. Y.

S. Yamashita, T. Yoshida, S. Y. Set, P. Polynkin, and N. Peyghambarian, “Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes,” Proc. SPIE 6453, 64531Y (2007).
[Crossref]

Such, M.

Swenson, G.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Tang, Y.

S. Liu, H. Li, Y. Tang, and L. Hu, “Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the Sol-Gel method,” Chin. Opt. Lett. 10(8), 42–45 (2012).

Teller, E.

S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60(2), 309–319 (1938).
[Crossref]

Toulouse, J.

Tunnermann, T.

Vienne, G.

Wang, M.

Wang, S.

Wang, Y.

Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
[Crossref] [PubMed]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

Xu, S. H.

Xu, W.

Yamashita, M.

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

L. Yang, M. Yamashita, and T. Akai, “Green and red high-silica luminous glass suitable for near-ultraviolet excitation,” Opt. Express 17(8), 6688–6695 (2009).
[Crossref] [PubMed]

Yamashita, S.

S. Yamashita, T. Yoshida, S. Y. Set, P. Polynkin, and N. Peyghambarian, “Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes,” Proc. SPIE 6453, 64531Y (2007).
[Crossref]

Yang, L.

Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
[Crossref] [PubMed]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

L. Yang, M. Yamashita, and T. Akai, “Green and red high-silica luminous glass suitable for near-ultraviolet excitation,” Opt. Express 17(8), 6688–6695 (2009).
[Crossref] [PubMed]

Yang, Y.

Y. Chu, Y. Ma, Y. Yang, L. Liao, Y. Wang, X. Hu, J. Peng, H. Li, N. Dai, J. Li, and L. Yang, “Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology,” Opt. Lett. 41(6), 1225–1228 (2016).
[Crossref] [PubMed]

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

Yang, Z. M.

Yoshida, T.

S. Yamashita, T. Yoshida, S. Y. Set, P. Polynkin, and N. Peyghambarian, “Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes,” Proc. SPIE 6453, 64531Y (2007).
[Crossref]

Yu, C.

Zellmer, H.

Zhang, A.

Zhang, L.

Zhou, Q.

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

Y. Chu, Y. Yang, Z. Liu, L. Liao, Y. Wang, J. Li, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass,” Appl. Phys., A Mater. Sci. Process. 118(4), 1429–1435 (2015).
[Crossref]

Chin. Opt. Lett. (1)

S. Liu, H. Li, Y. Tang, and L. Hu, “Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the Sol-Gel method,” Chin. Opt. Lett. 10(8), 42–45 (2012).

J. Am. Chem. Soc. (1)

S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60(2), 309–319 (1938).
[Crossref]

J. Asian Ceram. Soc. (1)

K. Kajihara, “Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses,” J. Asian Ceram. Soc. 1(2), 121–133 (2013).
[Crossref]

J. Mater. Chem. (1)

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem. 21(17), 6274–6279 (2011).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (3)

A. Carter and E. Li, “Recent progress in high-power fiber lasers for high-power and high-quality material processing applications,” Proc. SPIE 6344, 63440F (2006).
[Crossref]

S. Yamashita, T. Yoshida, S. Y. Set, P. Polynkin, and N. Peyghambarian, “Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes,” Proc. SPIE 6453, 64531Y (2007).
[Crossref]

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Technical Report of IEICE. (1)

H. Kubota and M. Nakazawa, “Numerical analyses of ultrashort fiber laser with optical nonlinear effect,” Technical Report of IEICE. 100, 61–66 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic description of the fabrication procedure of the PCF with the fiber core based on the NPSG. a) Preparing of sodium-borosilicate glass with special composition. b) Processing of the sodium-borosilicate glass into cylinder with a diameter of 3.5 mm and a length of 300 mm. c) Phase-separation of sodium-borosilicate glass rod. d) Acid leaching of the glass rod, after this step, there is only a silica skeleton left in the glass rod. e) Doping of rare earth ions into NPs-rod. f) Removing OH- groups and shrinking of the NPs-rod. g) Drawing of the fiber preform fabricated by stack and draw method. h) Finally, the PCF is obtained.
Fig. 2
Fig. 2 (a) Nitrogen-adsorption isotherms at 77 K of the NPs-rod. (b) The nitrogen adsorption cumulative pore size distribution. The field emission scanning electron microscope image of the NPs-rod (inset).
Fig. 3
Fig. 3 (a) The photographs of the Yb3+ doped silica glass rod. (b) Absorption spectrum of the Yb3+ doped silica glass rod. (c) XRD spectrum of the Yb3+ doped silica rod. (d) Fourier-transformed infrared spectrum of the Yb3+ doped silica glass rod.
Fig. 4
Fig. 4 (a) The micrograph of the Yb3+ doped PCF. (b) EPMA of the Yb3+ and Al3+ in the fiber.
Fig. 5
Fig. 5 (a) Schematic of the fiber laser experimental setup: a, laser Diode working around 976 nm; b, collimator lens; c, focusing lens; d, the dichroitic mirror with reflectivity of 99% around 1080nm and transmission of 99% at 976 nm; e, Yb3+ and Al3+ doped PCF; f, collimator lens; g, the dichroitic mirror with transmission of 99% at 976 nm and reflectivity of 99% around 1080 nm; h, the power meter. (b) Measured output power dependence on the absorbed pump power. (c) Measured spectrum of the fiber laser at an output power of 1 W.

Metrics