Abstract

Femtosecond double-pulsed laser excitation of a water film in air showed enhancements of X-ray intensity as compared with single pulse irradiation. The position of the highest yield of X-rays strongly depends on temporal separation between the pre-pulse and the main-pulse (energy ratios where ∼ 1 : 10). The strongest X-ray emission was observed at 10–15 ns delay of the main-pulse. Nanoscale roughening of water surface can account for the observation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system

Wei-Hung Hsu, Frances Camille P. Masim, Matteo Porta, Mai Thanh Nguyen, Tetsu Yonezawa, Armandas Balčytis, Xuewen Wang, Lorenzo Rosa, Saulius Juodkazis, and Koji Hatanaka
Opt. Express 24(18) 19994-20001 (2016)

Photoacoustic signal enhancements from gold nano-colloidal suspensions excited by a pair of time-delayed femtosecond pulses

Frances Camille P. Masim, Wei-Hung Hsu, Hao-Li Liu, Tetsu Yonezawa, Armandas Balčytis, Saulius Juodkazis, and Koji Hatanaka
Opt. Express 25(16) 19497-19507 (2017)

Intense water-window soft x-ray emission by spectral control using dual laser pulses

Goki Arai, Hiroyuki Hara, Tadashi Hatano, Takeo Ejima, Weihua Jiang, Hayato Ohashi, Shinichi Namba, Atsushi Sunahara, Akira Sasaki, Masaharu Nishikino, Gerry O’Sullivan, and Takeshi Higashiguchi
Opt. Express 26(21) 27748-27756 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
    [Crossref]
  2. X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
    [Crossref] [PubMed]
  3. E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
    [Crossref]
  4. S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
    [Crossref]
  5. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
    [Crossref] [PubMed]
  6. T. Lee, Y. Jiang, C. G. Rose-Petruck, and F. Benesch, “Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)64−,” J. Chem. Phys. C 122, 084506 (2005).
    [Crossref]
  7. S. Bulanov, L. Kovrizhnykh, and A. Sakharov, “Regular mechanisms of electron and ion acceleration in the interaction of strong electromagnetic waves with a plasma,” Physics Reports 186(1), 1–51 (1990).
    [Crossref]
  8. K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
    [Crossref]
  9. K. Hatanaka and H. Fukumura, “Femtosecond laser-induced X-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).
  10. L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
    [Crossref] [PubMed]
  11. S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
    [Crossref]
  12. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008).
    [Crossref]
  13. K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray Pulse Generation by Focusing Femtosecond Infrared Laser Pulses onto Aqueous Solutions of Alkali Metal Chloride,” Appl. Phys. Lett. 80(21), 3925–3927 (2002).
    [Crossref]
  14. K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
    [Crossref]
  15. K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
    [Crossref]
  16. K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
    [Crossref]
  17. W. H. Hsu, F. C. P. Masim, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, L. Rosa, S. Juodkazis, and K. Hatanaka, “Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system,” Opt. Express 24(18), 19994–20001 (2016).
    [Crossref] [PubMed]
  18. G. I. Taylor, “Formation of thin flat sheets of water,” Proc. R. Soc. Lond. A 259, 1–17 (1960).
    [Crossref]
  19. L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017).
    [Crossref]
  20. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quant. Electronics 38, 119–156 (2014).
    [Crossref]
  21. M. Trtica, B. Gakovic, B. Radak, D. Batani, T. Desai, and M. Bussoli, “Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses,” Appl. Surf. Sci. 254, 1377–1381 (2007).
    [Crossref]
  22. F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
    [Crossref]
  23. K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).
  24. M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of X-Ray Pulse Widths by Intensity Interferometry,” Phys. Rev. Lett. 88, 244801 (2002).
    [Crossref] [PubMed]
  25. W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
    [Crossref]
  26. F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
    [Crossref]
  27. M. Holtz, C. Hauf, J. Weisshaupt, A.-A. H. Salvador, M. Woerner, and T. Elsaesser, “Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources,” Struct. Dyn. 4(5), 054304 (2017).
    [Crossref] [PubMed]
  28. E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments, and Applications (Pan Stanford, 2011).
  29. W. Marbach, A. N. Asaad, and P. Krebs, “Optical absorption of solvated electrons in water and tetrahydrofuran/water mixtures,” J. Phys. Chem. A 103, 28–32 (1999).
    [Crossref]
  30. F. A. Rajgara, A. K. Dharmadhikari, D. Mathur, and C. P. Safvan, “Strong fields induce ultrafast rearrangement of H atoms in H2O molecule,” J. Chem. Phys. 130, 231104 (2009).
    [Crossref]
  31. J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
    [Crossref]
  32. K. Juodkazis, J. Juodkazyte, B. Šebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290, 13–17 (2014).
    [Crossref]

2017 (2)

L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017).
[Crossref]

M. Holtz, C. Hauf, J. Weisshaupt, A.-A. H. Salvador, M. Woerner, and T. Elsaesser, “Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources,” Struct. Dyn. 4(5), 054304 (2017).
[Crossref] [PubMed]

2016 (4)

F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
[Crossref]

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

W. H. Hsu, F. C. P. Masim, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, L. Rosa, S. Juodkazis, and K. Hatanaka, “Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system,” Opt. Express 24(18), 19994–20001 (2016).
[Crossref] [PubMed]

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

2014 (3)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quant. Electronics 38, 119–156 (2014).
[Crossref]

K. Juodkazis, J. Juodkazyte, B. Šebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290, 13–17 (2014).
[Crossref]

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

2012 (1)

K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
[Crossref]

2011 (2)

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
[Crossref]

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

2010 (1)

2009 (2)

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

F. A. Rajgara, A. K. Dharmadhikari, D. Mathur, and C. P. Safvan, “Strong fields induce ultrafast rearrangement of H atoms in H2O molecule,” J. Chem. Phys. 130, 231104 (2009).
[Crossref]

2008 (6)

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

K. Hatanaka and H. Fukumura, “Femtosecond laser-induced X-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008).
[Crossref]

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

2007 (1)

M. Trtica, B. Gakovic, B. Radak, D. Batani, T. Desai, and M. Bussoli, “Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses,” Appl. Surf. Sci. 254, 1377–1381 (2007).
[Crossref]

2005 (1)

T. Lee, Y. Jiang, C. G. Rose-Petruck, and F. Benesch, “Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)64−,” J. Chem. Phys. C 122, 084506 (2005).
[Crossref]

2004 (2)

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
[Crossref] [PubMed]

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

2002 (2)

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of X-Ray Pulse Widths by Intensity Interferometry,” Phys. Rev. Lett. 88, 244801 (2002).
[Crossref] [PubMed]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray Pulse Generation by Focusing Femtosecond Infrared Laser Pulses onto Aqueous Solutions of Alkali Metal Chloride,” Appl. Phys. Lett. 80(21), 3925–3927 (2002).
[Crossref]

1999 (1)

W. Marbach, A. N. Asaad, and P. Krebs, “Optical absorption of solvated electrons in water and tetrahydrofuran/water mixtures,” J. Phys. Chem. A 103, 28–32 (1999).
[Crossref]

1990 (1)

S. Bulanov, L. Kovrizhnykh, and A. Sakharov, “Regular mechanisms of electron and ion acceleration in the interaction of strong electromagnetic waves with a plasma,” Physics Reports 186(1), 1–51 (1990).
[Crossref]

1960 (1)

G. I. Taylor, “Formation of thin flat sheets of water,” Proc. R. Soc. Lond. A 259, 1–17 (1960).
[Crossref]

Ahmad, S.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Ansari, Z.

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

Asaad, A. N.

W. Marbach, A. N. Asaad, and P. Krebs, “Optical absorption of solvated electrons in water and tetrahydrofuran/water mixtures,” J. Phys. Chem. A 103, 28–32 (1999).
[Crossref]

Ayyub, P.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Badokas, K.

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

Balcytis, A.

W. H. Hsu, F. C. P. Masim, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, L. Rosa, S. Juodkazis, and K. Hatanaka, “Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system,” Opt. Express 24(18), 19994–20001 (2016).
[Crossref] [PubMed]

F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
[Crossref]

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).

Bargheer, M.

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
[Crossref] [PubMed]

Batani, D.

M. Trtica, B. Gakovic, B. Radak, D. Batani, T. Desai, and M. Bussoli, “Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses,” Appl. Surf. Sci. 254, 1377–1381 (2007).
[Crossref]

Benesch, F.

T. Lee, Y. Jiang, C. G. Rose-Petruck, and F. Benesch, “Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)64−,” J. Chem. Phys. C 122, 084506 (2005).
[Crossref]

Bostedt, C.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Bozek, J. D.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quant. Electronics 38, 119–156 (2014).
[Crossref]

Bulanov, S.

S. Bulanov, L. Kovrizhnykh, and A. Sakharov, “Regular mechanisms of electron and ion acceleration in the interaction of strong electromagnetic waves with a plasma,” Physics Reports 186(1), 1–51 (1990).
[Crossref]

Bulanov, S. V.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Bussoli, M.

M. Trtica, B. Gakovic, B. Radak, D. Batani, T. Desai, and M. Bussoli, “Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses,” Appl. Surf. Sci. 254, 1377–1381 (2007).
[Crossref]

Cao, X.

Carvalho, D.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Cavalieri, A. L.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Chakraborty, I.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Chen, L. M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Chen, M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Chen, Q.

Coffee, R.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Costello, J. T.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Cubaynes, D.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Das, A.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Desai, T.

M. Trtica, B. Gakovic, B. Radak, D. Batani, T. Desai, and M. Bussoli, “Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses,” Appl. Surf. Sci. 254, 1377–1381 (2007).
[Crossref]

Dharmadhikari, A. K.

F. A. Rajgara, A. K. Dharmadhikari, D. Mathur, and C. P. Safvan, “Strong fields induce ultrafast rearrangement of H atoms in H2O molecule,” J. Chem. Phys. 130, 231104 (2009).
[Crossref]

DiMauro, L. F.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Dong, Q. L.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Doumy, G.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Düsterer, S.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Elsaesser, T.

M. Holtz, C. Hauf, J. Weisshaupt, A.-A. H. Salvador, M. Woerner, and T. Elsaesser, “Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources,” Struct. Dyn. 4(5), 054304 (2017).
[Crossref] [PubMed]

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
[Crossref] [PubMed]

Fukumura, H.

K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
[Crossref]

K. Hatanaka and H. Fukumura, “Femtosecond laser-induced X-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray Pulse Generation by Focusing Femtosecond Infrared Laser Pulses onto Aqueous Solutions of Alkali Metal Chloride,” Appl. Phys. Lett. 80(21), 3925–3927 (2002).
[Crossref]

Fukushima, M.

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

Gagnon, J.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Gakovic, B.

M. Trtica, B. Gakovic, B. Radak, D. Batani, T. Desai, and M. Bussoli, “Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses,” Appl. Surf. Sci. 254, 1377–1381 (2007).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
[Crossref]

E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments, and Applications (Pan Stanford, 2011).

Grgurál, I.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Gritsai, Y.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
[Crossref] [PubMed]

Grüner, F.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Haschke, M.

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

Hashimoto, T.

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

Hatanaka, K.

F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
[Crossref]

W. H. Hsu, F. C. P. Masim, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, L. Rosa, S. Juodkazis, and K. Hatanaka, “Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system,” Opt. Express 24(18), 19994–20001 (2016).
[Crossref] [PubMed]

K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
[Crossref]

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

K. Hatanaka and H. Fukumura, “Femtosecond laser-induced X-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray Pulse Generation by Focusing Femtosecond Infrared Laser Pulses onto Aqueous Solutions of Alkali Metal Chloride,” Appl. Phys. Lett. 80(21), 3925–3927 (2002).
[Crossref]

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).

Hauf, C.

M. Holtz, C. Hauf, J. Weisshaupt, A.-A. H. Salvador, M. Woerner, and T. Elsaesser, “Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources,” Struct. Dyn. 4(5), 054304 (2017).
[Crossref] [PubMed]

Helml, W.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Holtz, M.

M. Holtz, C. Hauf, J. Weisshaupt, A.-A. H. Salvador, M. Woerner, and T. Elsaesser, “Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources,” Struct. Dyn. 4(5), 054304 (2017).
[Crossref] [PubMed]

Hsu, W. H.

Hsu, W.-H.

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).

Ilyin, A. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

Ishikawa, T.

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of X-Ray Pulse Widths by Intensity Interferometry,” Phys. Rev. Lett. 88, 244801 (2002).
[Crossref] [PubMed]

Jiang, Y.

T. Lee, Y. Jiang, C. G. Rose-Petruck, and F. Benesch, “Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)64−,” J. Chem. Phys. C 122, 084506 (2005).
[Crossref]

Juodkazis, K.

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

K. Juodkazis, J. Juodkazyte, B. Šebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290, 13–17 (2014).
[Crossref]

Juodkazis, S.

L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017).
[Crossref]

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

W. H. Hsu, F. C. P. Masim, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, L. Rosa, S. Juodkazis, and K. Hatanaka, “Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system,” Opt. Express 24(18), 19994–20001 (2016).
[Crossref] [PubMed]

F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
[Crossref]

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quant. Electronics 38, 119–156 (2014).
[Crossref]

K. Juodkazis, J. Juodkazyte, B. Šebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290, 13–17 (2014).
[Crossref]

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008).
[Crossref]

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).

Juodkazyte, J.

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

K. Juodkazis, J. Juodkazyte, B. Šebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290, 13–17 (2014).
[Crossref]

Kahaly, S.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Kando, M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Kato, Y.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Kaw, P. K.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Kienberger, R.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Kim, D. S.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
[Crossref] [PubMed]

Koga, J.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Kovrizhnykh, L.

S. Bulanov, L. Kovrizhnykh, and A. Sakharov, “Regular mechanisms of electron and ion acceleration in the interaction of strong electromagnetic waves with a plasma,” Physics Reports 186(1), 1–51 (1990).
[Crossref]

Krebs, P.

W. Marbach, A. N. Asaad, and P. Krebs, “Optical absorption of solvated electrons in water and tetrahydrofuran/water mixtures,” J. Phys. Chem. A 103, 28–32 (1999).
[Crossref]

Kumar, G. R.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Kumar, R.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Labutin, T. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

Lad, A. D.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Lednev, V. N.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

Lee, T.

T. Lee, Y. Jiang, C. G. Rose-Petruck, and F. Benesch, “Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)64−,” J. Chem. Phys. C 122, 084506 (2005).
[Crossref]

Li, Q.

Li, Y. T.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Liu, F.

Liu, X.

Liu, X. L.

Lu, X.

Ma, J. L.

Maier, A. R.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Malinauskas, T.

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

Marbach, W.

W. Marbach, A. N. Asaad, and P. Krebs, “Optical absorption of solvated electrons in water and tetrahydrofuran/water mixtures,” J. Phys. Chem. A 103, 28–32 (1999).
[Crossref]

Masim, F. C. P.

F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
[Crossref]

W. H. Hsu, F. C. P. Masim, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, L. Rosa, S. Juodkazis, and K. Hatanaka, “Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system,” Opt. Express 24(18), 19994–20001 (2016).
[Crossref] [PubMed]

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).

Mathur, D.

F. A. Rajgara, A. K. Dharmadhikari, D. Mathur, and C. P. Safvan, “Strong fields induce ultrafast rearrangement of H atoms in H2O molecule,” J. Chem. Phys. 130, 231104 (2009).
[Crossref]

Matsuo, S.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008).
[Crossref]

Messerschmidt, M.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Meyer, M.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quant. Electronics 38, 119–156 (2014).
[Crossref]

Misawa, H.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008).
[Crossref]

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

Miura, T.

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray Pulse Generation by Focusing Femtosecond Infrared Laser Pulses onto Aqueous Solutions of Alkali Metal Chloride,” Appl. Phys. Lett. 80(21), 3925–3927 (2002).
[Crossref]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008).
[Crossref]

Mondal, S.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Nagafuchi, K.

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

Narayanan, V.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Nguyen, M. T.

F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
[Crossref]

W. H. Hsu, F. C. P. Masim, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, L. Rosa, S. Juodkazis, and K. Hatanaka, “Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system,” Opt. Express 24(18), 19994–20001 (2016).
[Crossref] [PubMed]

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).

Ono, H.

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

Popov, A. M.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

Porta, M.

W. H. Hsu, F. C. P. Masim, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, L. Rosa, S. Juodkazis, and K. Hatanaka, “Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system,” Opt. Express 24(18), 19994–20001 (2016).
[Crossref] [PubMed]

F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
[Crossref]

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).

Radak, B.

M. Trtica, B. Gakovic, B. Radak, D. Batani, T. Desai, and M. Bussoli, “Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses,” Appl. Surf. Sci. 254, 1377–1381 (2007).
[Crossref]

Radcliffe, P.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Rajgara, F. A.

F. A. Rajgara, A. K. Dharmadhikari, D. Mathur, and C. P. Safvan, “Strong fields induce ultrafast rearrangement of H atoms in H2O molecule,” J. Chem. Phys. 130, 231104 (2009).
[Crossref]

Roedig, C.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Rosa, L.

Rose-Petruck, C. G.

T. Lee, Y. Jiang, C. G. Rose-Petruck, and F. Benesch, “Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)64−,” J. Chem. Phys. C 122, 084506 (2005).
[Crossref]

Rothhardt, P.

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

Safvan, C. P.

F. A. Rajgara, A. K. Dharmadhikari, D. Mathur, and C. P. Safvan, “Strong fields induce ultrafast rearrangement of H atoms in H2O molecule,” J. Chem. Phys. 130, 231104 (2009).
[Crossref]

Sakharov, A.

S. Bulanov, L. Kovrizhnykh, and A. Sakharov, “Regular mechanisms of electron and ion acceleration in the interaction of strong electromagnetic waves with a plasma,” Physics Reports 186(1), 1–51 (1990).
[Crossref]

Salvador, A.-A. H.

M. Holtz, C. Hauf, J. Weisshaupt, A.-A. H. Salvador, M. Woerner, and T. Elsaesser, “Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources,” Struct. Dyn. 4(5), 054304 (2017).
[Crossref] [PubMed]

Savickaja, I.

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

Schmising, C. v K.

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

Schorb, S.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Schweinberger, W.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Šebeka, B.

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

K. Juodkazis, J. Juodkazyte, B. Šebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290, 13–17 (2014).
[Crossref]

Sengupta, S.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Seniutinas, G.

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

Sheng, Z. M.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Singh, P.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Sun, H.

Tajima, T.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Tamasaku, K.

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of X-Ray Pulse Widths by Intensity Interferometry,” Phys. Rev. Lett. 88, 244801 (2002).
[Crossref] [PubMed]

Taylor, G. I.

G. I. Taylor, “Formation of thin flat sheets of water,” Proc. R. Soc. Lond. A 259, 1–17 (1960).
[Crossref]

Tian, W.

Trobitzsch-Ryll, T.

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

Trtica, M.

M. Trtica, B. Gakovic, B. Radak, D. Batani, T. Desai, and M. Bussoli, “Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses,” Appl. Surf. Sci. 254, 1377–1381 (2007).
[Crossref]

Tschentscher, Th.

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

Ueno, K.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008).
[Crossref]

Wang, L.

Wang, W. M.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Wang, X.

Weisshaupt, J.

M. Holtz, C. Hauf, J. Weisshaupt, A.-A. H. Salvador, M. Woerner, and T. Elsaesser, “Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources,” Struct. Dyn. 4(5), 054304 (2017).
[Crossref] [PubMed]

Woerner, M.

M. Holtz, C. Hauf, J. Weisshaupt, A.-A. H. Salvador, M. Woerner, and T. Elsaesser, “Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources,” Struct. Dyn. 4(5), 054304 (2017).
[Crossref] [PubMed]

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
[Crossref] [PubMed]

Woo, J. C.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
[Crossref] [PubMed]

Xi, T. T.

Xu, B.

Xu, H.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Xu, M. H.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Yabashi, M.

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of X-Ray Pulse Widths by Intensity Interferometry,” Phys. Rev. Lett. 88, 244801 (2002).
[Crossref] [PubMed]

Yadav, S. K.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Yomogihata, K.-I.

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

Yonezawa, T.

F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
[Crossref]

W. H. Hsu, F. C. P. Masim, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, L. Rosa, S. Juodkazis, and K. Hatanaka, “Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system,” Opt. Express 24(18), 19994–20001 (2016).
[Crossref] [PubMed]

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).

Yuan, X. H.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Zamponi, F.

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

Zhang, J.

X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
[Crossref] [PubMed]

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Zhavoronkov, N.

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
[Crossref] [PubMed]

ACS Photonics (1)

F. C. P. Masim, M. Porta, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3(11), 2184–2190 (2016).
[Crossref]

App. Phys. Lett. (1)

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

Appl. Phys. A (1)

F. Zamponi, Z. Ansari, C. v K. Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, “Femtosecond hard X-ray plasma sources with a kilohertz repetition rate,” Appl. Phys. A 96, 51–58 (2009).
[Crossref]

Appl. Phys. Lett. (1)

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray Pulse Generation by Focusing Femtosecond Infrared Laser Pulses onto Aqueous Solutions of Alkali Metal Chloride,” Appl. Phys. Lett. 80(21), 3925–3927 (2002).
[Crossref]

Appl. Surf. Sci. (2)

M. Trtica, B. Gakovic, B. Radak, D. Batani, T. Desai, and M. Bussoli, “Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses,” Appl. Surf. Sci. 254, 1377–1381 (2007).
[Crossref]

K. Juodkazis, J. Juodkazyte, B. Šebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290, 13–17 (2014).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008).
[Crossref]

Chem. Phys. (1)

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

Int. J. Hydrogen Energy (1)

J. Juodkazytė, G. Seniutinas, B. Šebeka, I. Savickaja, T. Malinauskas, K. Badokas, K. Juodkazis, and S. Juodkazis, “Solar water splitting: efficiency discussion,” Int. J. Hydrogen Energy 41(28), 11941–11948 (2016).
[Crossref]

J. Anal. At. Spectrom. (1)

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

J. Chem. Phys. (1)

F. A. Rajgara, A. K. Dharmadhikari, D. Mathur, and C. P. Safvan, “Strong fields induce ultrafast rearrangement of H atoms in H2O molecule,” J. Chem. Phys. 130, 231104 (2009).
[Crossref]

J. Chem. Phys. C (1)

T. Lee, Y. Jiang, C. G. Rose-Petruck, and F. Benesch, “Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)64−,” J. Chem. Phys. C 122, 084506 (2005).
[Crossref]

J. Non-Crystall. Solids (1)

K. Hatanaka, K.-I. Yomogihata, H. Ono, K. Nagafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard X-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crystall. Solids 354, 5485–5490 (2008).
[Crossref]

J. Phys. Chem. A (1)

W. Marbach, A. N. Asaad, and P. Krebs, “Optical absorption of solvated electrons in water and tetrahydrofuran/water mixtures,” J. Phys. Chem. A 103, 28–32 (1999).
[Crossref]

Nat. Photon (1)

W. Helml, A. R. Maier, W. Schweinberger, I. Grgurál, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri, and R. Kienberger, “Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain,” Nat. Photon 8(12), 950–957 (2014).
[Crossref]

New Glass (1)

K. Hatanaka and H. Fukumura, “Femtosecond laser-induced X-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).

Opt. Express (2)

Optica (1)

Phys. Rep. (1)

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
[Crossref]

Phys. Rev. B. (1)

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Phys. Rev. Lett. (3)

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of X-Ray Pulse Widths by Intensity Interferometry,” Phys. Rev. Lett. 88, 244801 (2002).
[Crossref] [PubMed]

Physics Reports (1)

S. Bulanov, L. Kovrizhnykh, and A. Sakharov, “Regular mechanisms of electron and ion acceleration in the interaction of strong electromagnetic waves with a plasma,” Physics Reports 186(1), 1–51 (1990).
[Crossref]

Proc. R. Soc. Lond. A (1)

G. I. Taylor, “Formation of thin flat sheets of water,” Proc. R. Soc. Lond. A 259, 1–17 (1960).
[Crossref]

Prog. Quant. Electronics (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quant. Electronics 38, 119–156 (2014).
[Crossref]

Science (1)

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction,” Science 306, 1771–1773 (2004).
[Crossref] [PubMed]

Struct. Dyn. (1)

M. Holtz, C. Hauf, J. Weisshaupt, A.-A. H. Salvador, M. Woerner, and T. Elsaesser, “Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources,” Struct. Dyn. 4(5), 054304 (2017).
[Crossref] [PubMed]

X-ray Spectrom. (1)

K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
[Crossref]

Other (2)

E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments, and Applications (Pan Stanford, 2011).

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions,” arXiv:1604.07541 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Setup used for X-ray detection using two fs-laser pulses with controlled time separation, Δt; HWP is the half-wave plate, PBS is the polarized beam splitter, RR is the retro-reflector, ODL is the optical delay line, OAPM is the off-axis parabolic mirror, S is the sample solution, GM is the Geiger Müller counter, APS is the automatic positioning system, DS is the displacement sensor.
Fig. 2
Fig. 2 X-ray intensity of a water film irradiation by the main-pulse of 700 μJ at different time delays Δt after the pre-pulse on a ps- (a) and ns-time (b) scales. The pre-pulse energy was 80 μJ. Automatic positioning system was used to find the maximum X-ray intensity [17]. (c) Slices of the X-ray intensity spatial profiles for the time delays from −48.4 ps to 1 ns. (d) A high z-axis resolution plot of the X-ray intensity at Δt = 1.6 ps at which the local maximum was observed in the picosecond range. The double peak is deconvoluted into two Gaussian contributions. X-ray emission without the pre-pulse was more than twice lower in the peak amplitude.
Fig. 3
Fig. 3 (a) Dependence of the solution surface position of the Δt time-delayed main-pulse for the maximum intensity of X-rays from a 20-μm-thick water film (thickness of film is marked by shaded area). Error bars are plotted as standard deviation for 20 pulse measurement. Pre-pulse energy was 80 μJ, the main-pulse was 700 μJ. Inset schematically shows contributions of the main three peak positions at which X-ray emission is maximized. (b) Schematics of two-pulse irradiation of a solution film for the three typical positions of the solution surface when the maximum of X-rays is generated; focusing position is at the main pulse. The width of film and axial extent of focal region for low intensity focus are comparable. (c) Intensity profiles for NA = 0.25 focusing in air; length of pulse ctp ≃ 12 μm. Intensity is presented on logarithmic scale, I = 0.5 at zR is marked by a contour line (corresponds to the depth of focus). For comparison, the width of water film, h, is marked; in experiments, the irradiation angle was θ = 60° and the effective width of water film was twice larger h/ cos θ.
Fig. 4
Fig. 4 X-ray intensity at different positions of the water flow film at 5 ns (a) and 15 ns (b) delays. The fit lines in green were constructed by multi-Gaussian function. Under double-pulsed excitation, the spatial profiles of X-ray intensity are significantly different at various delays. The data set for the main-pulse-only irradiation is shown with 50 counts offset for clarity.
Fig. 5
Fig. 5 X-ray intensity and the axial z-position of the water film at short ps (a) and long ns (b) delays. The positions with the maximum X-ray intensity showing in positive z-axis at ps delays and negative z-axis at ns delays represent up-stream shifts and down-stream shifts as pattern 2 and pattern 3 shown in the inset.
Fig. 6
Fig. 6 FDTD modeling of 800 nm wavelength light (plane wave) traversing water film with several generic surface ripple patterns expected to develop under pulsed excitation. The patterns are: the period Λ = λ on the front surface and depth profile ∼ λ/2, the back-side period λ/n, random pattern of similar size protrusions caused by light filamentation pattern, and initial stages of departing droplets. Insets show schematically the pattern simulated. Thickness of film is taken 10 μm to reduce simulation time; IntensityE2.
Fig. 7
Fig. 7 X-ray emission at different pre-pulse energies at Δt = 1.6 ps when there is most intense peak developed up-stream. The line represents a γ = 2 power law. Sample: water film.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( Δ ε d ) im ω pe 2 ω 2 ν e ω = n e n cr ν e ω ,
l abs = λ 2 π κ = n 0 λ π ( Δ ε d ) im = 2 c n 0 ν e n cr n e
W abs = A 0 ν e c n 0 n e n cr F p n e n cr F p ,

Metrics