Abstract

This paper investigates an adaptive threshold decision (ATD) scheme without the knowledge of channel state information (CSI) for optical wireless communication (OWC). Based on the low-pass characteristic of atmospheric turbulence channels, a low-pass filter is designed for the received signals, and the filtered signal can be employed as decision threshold. Theoretical analyses show that performance of ATD is very close to that with perfect CSI. Monte Carlo simulations demonstrate that the proposed scheme shows only 0.0221dB signal-to-noise (SNR) loss at most with Rytov variance of 0.05 and SNR of 21dB. An indoor experiment results are presented, which match well with that of theoretical prediction. The scheme is simple and without CSI, hence the efficient scheme makes the real-time implementation of high-speed transmissions for OWC based on ATD feasible.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suboptimal maximum likelihood detection of on–off keying for a wireless optical communication system

Ruijie Li, Shengli Ding, and Anhong Dang
J. Opt. Soc. Am. A 34(5) 798-803 (2017)

Performance improvement of on-off-keying free‑space optical transmission systems by a co‑propagating reference continuous wave light

Zixiong Wang, Wen-De Zhong, Changyuan Yu, and Songnian Fu
Opt. Express 20(8) 9284-9295 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4761 (2006).
    [Crossref]
  2. A. Dang, “A closed-form solution of the bit-error rate for optical wireless communication systems over atmospheric turbulence channels,” Opt. Express 19(4), 3494–3502 (2011).
    [Crossref] [PubMed]
  3. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys Tuts. 16(4), 2231–2258 (2014).
    [Crossref]
  4. J. Zhang, S. Ding, H. Zhai, and A. Dang, “Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems,” Opt. Express 22(26), 32482–32488 (2014).
    [Crossref] [PubMed]
  5. Y. Han, A. Dang, Y. Ren, J. Tang, and H. Guo, “Theoretical and experimental studies of turbo product code with time diversity in free space optical communication,” Opt. Express 18(26), 26978–26988 (2010).
    [Crossref] [PubMed]
  6. M. M. Abadi, Z. Ghassemlooy, M.-A. Khalighi, S. Zvanovec, and M. R. Bhatnagar, “FSO detection using differential signaling in outdoor correlated-channels condition,” IEEE Photonics Technol. Lett. 28(1), 55–58 (2016).
    [Crossref]
  7. M. Tycz, M. W. Fitzmaurice, and D. A. Premo, “Optical communication system performance with tracking error induced signal fading,” IEEE Trans. Commun. 21(9), 1069–1072 (1973).
    [Crossref]
  8. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
    [Crossref]
  9. M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57(4), 1119–1128 (2009).
    [Crossref]
  10. X. Zhu, J. M. Kahn, and J. Wang, “Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques,” IEEE Photonics Technol. Lett. 15(4), 623–625 (2003).
    [Crossref]
  11. M. L. B. Riediger, R. Schober, and L. Lampe, “Blind detection of on-off keying for free-space optical communications,” in Proc. Can. Conf. Electr. Comput. Eng. (2008), pp. 1361–1364.
    [Crossref]
  12. M. T. Dabiri and S. M. S. Sadough, “Generalized blind detection of OOK modulation for free-space optical communication,” IEEE Commun. Lett. (to be published).
  13. T. Song and P.-Y. Kam, “A robust GLRT receiver with implicit channel estimation and automatic threshold adjustment for the free space optical channel with IM/DD,” J. Lightwave Technol. 32(3), 369–383 (2014).
    [Crossref]
  14. K. J. Grant, K. A. Corbett, and B. A. Clare, “Dual wavelength free space optical communications,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CTuG3.
  15. L. Yang, B. Zhu, J. Cheng, and J. F. Holzman, “Free-space optical communications using on–off keying and source information transformation,” J. Lightwave Technol. 34(11), 2601–2609 (2016).
    [Crossref]
  16. J.-M. Conan, G. Rousset, and P.-Y. Madec, “Wave-front temporal spectra in high-resolution imaging through turbulence,” J. Opt. Soc. Am. A 12(7), 1559–1570 (1995).
    [Crossref]
  17. J. A. Anguita and J. E. Cisternas, “Influence of turbulence strength on temporal correlation of scintillation,” Opt. Lett. 36(9), 1725–1727 (2011).
    [Crossref] [PubMed]
  18. H. Shen, L. Yu, and C. Fan, “Temporal spectrum of atmospheric scintillation and the effects of aperture averaging and time averaging,” Opt. Commun. 330, 160–164 (2014).
    [Crossref]
  19. G. John, Proakis, Ditital Communications (McGraw-Hill, 2001).
  20. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
    [Crossref]
  21. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
    [Crossref]
  22. P. Polynkin, A. Peleg, L. Klein, T. Rhoadarmer, and J. Moloney, “Optimized multiemitter beams for free-space optical communications through turbulent atmosphere,” Opt. Lett. 32(8), 885–887 (2007).
    [Crossref] [PubMed]
  23. R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photonics Technol. Lett. 21(17), 1196–1198 (2009).
    [Crossref]
  24. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 2014), Chap. 3.
  25. P. Matula and I. Stepien, “Weak convergence of products of sums of independent and non-identically distributed random variables,” J. Math. Anal. Appl. 353(1), 49–54 (2009).
    [Crossref]

2016 (2)

M. M. Abadi, Z. Ghassemlooy, M.-A. Khalighi, S. Zvanovec, and M. R. Bhatnagar, “FSO detection using differential signaling in outdoor correlated-channels condition,” IEEE Photonics Technol. Lett. 28(1), 55–58 (2016).
[Crossref]

L. Yang, B. Zhu, J. Cheng, and J. F. Holzman, “Free-space optical communications using on–off keying and source information transformation,” J. Lightwave Technol. 34(11), 2601–2609 (2016).
[Crossref]

2014 (4)

T. Song and P.-Y. Kam, “A robust GLRT receiver with implicit channel estimation and automatic threshold adjustment for the free space optical channel with IM/DD,” J. Lightwave Technol. 32(3), 369–383 (2014).
[Crossref]

J. Zhang, S. Ding, H. Zhai, and A. Dang, “Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems,” Opt. Express 22(26), 32482–32488 (2014).
[Crossref] [PubMed]

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys Tuts. 16(4), 2231–2258 (2014).
[Crossref]

H. Shen, L. Yu, and C. Fan, “Temporal spectrum of atmospheric scintillation and the effects of aperture averaging and time averaging,” Opt. Commun. 330, 160–164 (2014).
[Crossref]

2011 (2)

2010 (1)

2009 (3)

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photonics Technol. Lett. 21(17), 1196–1198 (2009).
[Crossref]

P. Matula and I. Stepien, “Weak convergence of products of sums of independent and non-identically distributed random variables,” J. Math. Anal. Appl. 353(1), 49–54 (2009).
[Crossref]

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57(4), 1119–1128 (2009).
[Crossref]

2007 (2)

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

P. Polynkin, A. Peleg, L. Klein, T. Rhoadarmer, and J. Moloney, “Optimized multiemitter beams for free-space optical communications through turbulent atmosphere,” Opt. Lett. 32(8), 885–887 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (1)

X. Zhu, J. M. Kahn, and J. Wang, “Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques,” IEEE Photonics Technol. Lett. 15(4), 623–625 (2003).
[Crossref]

2002 (1)

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

2001 (1)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

1995 (1)

1973 (1)

M. Tycz, M. W. Fitzmaurice, and D. A. Premo, “Optical communication system performance with tracking error induced signal fading,” IEEE Trans. Commun. 21(9), 1069–1072 (1973).
[Crossref]

Abadi, M. M.

M. M. Abadi, Z. Ghassemlooy, M.-A. Khalighi, S. Zvanovec, and M. R. Bhatnagar, “FSO detection using differential signaling in outdoor correlated-channels condition,” IEEE Photonics Technol. Lett. 28(1), 55–58 (2016).
[Crossref]

Al-Habash, M. A.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

Andrews, L. C.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

Anguita, J. A.

Bhatnagar, M. R.

M. M. Abadi, Z. Ghassemlooy, M.-A. Khalighi, S. Zvanovec, and M. R. Bhatnagar, “FSO detection using differential signaling in outdoor correlated-channels condition,” IEEE Photonics Technol. Lett. 28(1), 55–58 (2016).
[Crossref]

Borah, D. K.

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photonics Technol. Lett. 21(17), 1196–1198 (2009).
[Crossref]

Chan, V. W. S.

Cheng, J.

Cisternas, J. E.

Conan, J.-M.

Dabiri, M. T.

M. T. Dabiri and S. M. S. Sadough, “Generalized blind detection of OOK modulation for free-space optical communication,” IEEE Commun. Lett. (to be published).

Dang, A.

Ding, S.

Fan, C.

H. Shen, L. Yu, and C. Fan, “Temporal spectrum of atmospheric scintillation and the effects of aperture averaging and time averaging,” Opt. Commun. 330, 160–164 (2014).
[Crossref]

Fitzmaurice, M. W.

M. Tycz, M. W. Fitzmaurice, and D. A. Premo, “Optical communication system performance with tracking error induced signal fading,” IEEE Trans. Commun. 21(9), 1069–1072 (1973).
[Crossref]

Ghassemlooy, Z.

M. M. Abadi, Z. Ghassemlooy, M.-A. Khalighi, S. Zvanovec, and M. R. Bhatnagar, “FSO detection using differential signaling in outdoor correlated-channels condition,” IEEE Photonics Technol. Lett. 28(1), 55–58 (2016).
[Crossref]

Guo, H.

Han, Y.

Holzman, J. F.

Jonnalagadda, R.

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photonics Technol. Lett. 21(17), 1196–1198 (2009).
[Crossref]

Kahn, J. M.

X. Zhu, J. M. Kahn, and J. Wang, “Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques,” IEEE Photonics Technol. Lett. 15(4), 623–625 (2003).
[Crossref]

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

Kam, P.-Y.

Kavehrad, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

Khalighi, M. A.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys Tuts. 16(4), 2231–2258 (2014).
[Crossref]

Khalighi, M.-A.

M. M. Abadi, Z. Ghassemlooy, M.-A. Khalighi, S. Zvanovec, and M. R. Bhatnagar, “FSO detection using differential signaling in outdoor correlated-channels condition,” IEEE Photonics Technol. Lett. 28(1), 55–58 (2016).
[Crossref]

Klein, L.

Lampe, L.

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57(4), 1119–1128 (2009).
[Crossref]

M. L. B. Riediger, R. Schober, and L. Lampe, “Blind detection of on-off keying for free-space optical communications,” in Proc. Can. Conf. Electr. Comput. Eng. (2008), pp. 1361–1364.
[Crossref]

Luna, R.

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photonics Technol. Lett. 21(17), 1196–1198 (2009).
[Crossref]

Madec, P.-Y.

Matula, P.

P. Matula and I. Stepien, “Weak convergence of products of sums of independent and non-identically distributed random variables,” J. Math. Anal. Appl. 353(1), 49–54 (2009).
[Crossref]

Moloney, J.

Navidpour, S. M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

Peleg, A.

Phillips, R. L.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

Polynkin, P.

Premo, D. A.

M. Tycz, M. W. Fitzmaurice, and D. A. Premo, “Optical communication system performance with tracking error induced signal fading,” IEEE Trans. Commun. 21(9), 1069–1072 (1973).
[Crossref]

Ren, Y.

Rhoadarmer, T.

Riediger, M. L. B.

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57(4), 1119–1128 (2009).
[Crossref]

M. L. B. Riediger, R. Schober, and L. Lampe, “Blind detection of on-off keying for free-space optical communications,” in Proc. Can. Conf. Electr. Comput. Eng. (2008), pp. 1361–1364.
[Crossref]

Rousset, G.

Sadough, S. M. S.

M. T. Dabiri and S. M. S. Sadough, “Generalized blind detection of OOK modulation for free-space optical communication,” IEEE Commun. Lett. (to be published).

Schober, R.

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57(4), 1119–1128 (2009).
[Crossref]

M. L. B. Riediger, R. Schober, and L. Lampe, “Blind detection of on-off keying for free-space optical communications,” in Proc. Can. Conf. Electr. Comput. Eng. (2008), pp. 1361–1364.
[Crossref]

Shen, H.

H. Shen, L. Yu, and C. Fan, “Temporal spectrum of atmospheric scintillation and the effects of aperture averaging and time averaging,” Opt. Commun. 330, 160–164 (2014).
[Crossref]

Song, T.

Stepien, I.

P. Matula and I. Stepien, “Weak convergence of products of sums of independent and non-identically distributed random variables,” J. Math. Anal. Appl. 353(1), 49–54 (2009).
[Crossref]

Tang, J.

Tycz, M.

M. Tycz, M. W. Fitzmaurice, and D. A. Premo, “Optical communication system performance with tracking error induced signal fading,” IEEE Trans. Commun. 21(9), 1069–1072 (1973).
[Crossref]

Uysal, M.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys Tuts. 16(4), 2231–2258 (2014).
[Crossref]

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

Voelz, D. G.

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photonics Technol. Lett. 21(17), 1196–1198 (2009).
[Crossref]

Wang, J.

X. Zhu, J. M. Kahn, and J. Wang, “Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques,” IEEE Photonics Technol. Lett. 15(4), 623–625 (2003).
[Crossref]

Yang, L.

Yu, L.

H. Shen, L. Yu, and C. Fan, “Temporal spectrum of atmospheric scintillation and the effects of aperture averaging and time averaging,” Opt. Commun. 330, 160–164 (2014).
[Crossref]

Zhai, H.

Zhang, J.

Zhu, B.

Zhu, X.

X. Zhu, J. M. Kahn, and J. Wang, “Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques,” IEEE Photonics Technol. Lett. 15(4), 623–625 (2003).
[Crossref]

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

Zvanovec, S.

M. M. Abadi, Z. Ghassemlooy, M.-A. Khalighi, S. Zvanovec, and M. R. Bhatnagar, “FSO detection using differential signaling in outdoor correlated-channels condition,” IEEE Photonics Technol. Lett. 28(1), 55–58 (2016).
[Crossref]

IEEE Commun. Surveys Tuts. (1)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys Tuts. 16(4), 2231–2258 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. M. Abadi, Z. Ghassemlooy, M.-A. Khalighi, S. Zvanovec, and M. R. Bhatnagar, “FSO detection using differential signaling in outdoor correlated-channels condition,” IEEE Photonics Technol. Lett. 28(1), 55–58 (2016).
[Crossref]

X. Zhu, J. M. Kahn, and J. Wang, “Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques,” IEEE Photonics Technol. Lett. 15(4), 623–625 (2003).
[Crossref]

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photonics Technol. Lett. 21(17), 1196–1198 (2009).
[Crossref]

IEEE Trans. Commun. (3)

M. Tycz, M. W. Fitzmaurice, and D. A. Premo, “Optical communication system performance with tracking error induced signal fading,” IEEE Trans. Commun. 21(9), 1069–1072 (1973).
[Crossref]

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57(4), 1119–1128 (2009).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

J. Lightwave Technol. (3)

J. Math. Anal. Appl. (1)

P. Matula and I. Stepien, “Weak convergence of products of sums of independent and non-identically distributed random variables,” J. Math. Anal. Appl. 353(1), 49–54 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

H. Shen, L. Yu, and C. Fan, “Temporal spectrum of atmospheric scintillation and the effects of aperture averaging and time averaging,” Opt. Commun. 330, 160–164 (2014).
[Crossref]

Opt. Eng. (1)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (5)

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 2014), Chap. 3.

G. John, Proakis, Ditital Communications (McGraw-Hill, 2001).

K. J. Grant, K. A. Corbett, and B. A. Clare, “Dual wavelength free space optical communications,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CTuG3.

M. L. B. Riediger, R. Schober, and L. Lampe, “Blind detection of on-off keying for free-space optical communications,” in Proc. Can. Conf. Electr. Comput. Eng. (2008), pp. 1361–1364.
[Crossref]

M. T. Dabiri and S. M. S. Sadough, “Generalized blind detection of OOK modulation for free-space optical communication,” IEEE Commun. Lett. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 System block diagram of ATD. TA/RA, transmitting/receiving antenna; ADC, analog-to-digital conversion; LPF, low-pass filter.
Fig. 2
Fig. 2 Theoretical BER comparison of ATD and decision with perfect CSI. The abbreviations “ATD” and “CSI” denote the case of ATD and decision with perfect CSI, respectively.
Fig. 3
Fig. 3 Simulation results of sfA. (a) Comparison of simulated and theoretical variances of sfA. (b) Correlation coefficient of simulated and theoretical distributions of sfA.
Fig. 4
Fig. 4 Waveform comparison of EIF and RIF in simulation.
Fig. 5
Fig. 5 Correlation coefficients between EIF and RIF in simulation.
Fig. 6
Fig. 6 BER comparison of ATD and decision with perfect CSI in Monte Carlo simulation. The abbreviations “ATD” and “CSI” denote the case of ATD and decision with perfect CSI, respectively. “sim.” and “the.” denote the case of simulation results and theoretical results, respectively.
Fig. 7
Fig. 7 Experimental setup. (a) Block diagram of the experimental setup. (b) Photograph of the experimental setup. The DC (direct current) electrical source is used to provide the DC bias for the MZM. MWA, microwave amplifier; MZM, Mach-Zehnder modulator; EDFA, erbium doped fiber amplifier; VOA, variable optical attenuator; DSP, digital signal processing.
Fig. 8
Fig. 8 Experimental data of intensity fluctuation. (a)-(d) Measured distributions of EIF in experiment fitted with Gamma-Gamma distributions. The green histograms show the measured distributions, and the red curves are the fitting Gamma-Gamma distributions. (e) Extracted Rytov variances from received signals in experiment. The marked curves show the extracted Rytov variances, and the dash horizontal lines with the same color present the corresponding real Rytov variance.
Fig. 9
Fig. 9 Experimental BER performance of ATD. Abbreviations follow the comma “The.” and “Exp.” denote the theoretical BER and the experimental BER, respectively.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

r [ k ] = I [ k ] s [ k ] + n [ k ] ,
φ [ k ] = I [ k ] s f [ k ] + n f [ k ] ,
Ψ s ( f ) = 1 2 B s sin c 2 ( f B s ) + 1 4 δ ( f ) , f 0 ,
σ s , f A 2 = 1 2 B s 0 B f sin c 2 ( f B s ) d f B f 2 B s ,
φ [ k ] = I [ k ] 2 + I [ k ] s f A [ k ] + n f [ k ] .
r [ k ] d ^ [ k ] = 0 d ^ [ k ] = 1 φ [ k ] .
P ( 0 | 1 ) = Pr { I [ k ] + n [ k ] < φ [ k ] } =Pr { n [ k ] n f [ k ] > I [ k ] ( 1 2 s f A [ k ] ) } ,
P ( 1 | 0 ) = Pr { n [ k ] > φ [ k ] } =Pr { n [ k ] n f [ k ] > I [ k ] ( 1 2 + s f A [ k ] ) } ,
P e ( I , s f A ) = P ( 1 ) P ( 0 | 1 ) + P ( 0 ) P ( 1 | 0 ) = P ( 1 ) Q [ I 2 γ ( 1 2 s f A ) ] + P ( 0 ) Q [ I 2 γ ( 1 2 + s f A ) ] ,
P e = 0 P e ( I , s f A ) f I ( I ) p s , f A ( s f A ) d s f A d I ,
f I ( I ) = 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) I ( α + β ) / 2 1 K α β ( 2 α β I ) , I > 0 ,
P e c s i = 0 f I ( I ) Q ( γ 2 I ) d I .
s f ( t ) = h ( τ ) s ( t τ ) d τ , = 2 B f sin c ( 2 B f τ ) k = d [ k ] g ( t τ k T ) d τ , = 2 B f k = d [ k ] sin c ( 2 B f τ ) g ( t τ k T ) d τ .
s f ( t ) = 2 B f k = d [ k ] t k T T 2 t k T + T 2 sin c ( 2 B f τ ) d τ .
s f ( t ) = 2 B f T k = d [ k ] sin c [ 2 B f ( t k T ) ] .
M = 1 2 k = sin c [ 2 B f ( t k T ) ] = 1 4 B f T ,
D 2 = 1 4 k = sin c 2 [ 2 B f ( t k T ) ] = 1 8 B f T .
1 D 2 k = | x μ ξ k | > ε D ( x μ ξ k ) 2 f ξ k ( x ) d x = 0 ,
μ s f = 2 B f T M = 1 2
σ s f 2 = ( 2 B f T ) 2 D 2 = B f 2 B s

Metrics