Abstract

A strong chiral near-field is crucial for the detection of chiral molecules. Active tuning of the chiral near-field can shorten the detection process. In this study, a graphene-based achiral nanoring (GAN) that can actively control chiral near-fields is presented. The GAN is composed of three identical graphene pieces. The handedness and strength of the chiral near-fields can be actively controlled by adjusting the Fermi levels of these three graphene pieces. The optical chirality of the GAN near-field is 500 times that of circularly polarized light. In addition, the GAN enhances the chiral response of the chiral material by a factor of 250. This work provides opportunities for the ultrasensitive detection and location of molecules through the active control of chiral near-fields.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical study of tunable chirality from graphene integrated achiral metasurfaces

Tun Cao, Yang Li, Xinyu Zhang, and Yang Zou
Photon. Res. 5(5) 441-449 (2017)

Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene

Tun Cao, Chen-Wei Wei, Li-Bang Mao, and Shuai Wang
Opt. Express 23(14) 18620-18629 (2015)

Optical enantioseparation of chiral molecules using asymmetric plasmonic nanoapertures

Hipólito A. Arredondo Champi, Rina H. Bustamante, and Walter J. Salcedo
Opt. Mater. Express 9(4) 1763-1775 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University).
  2. N. Berova and K. Nakanishi, Circular Dichroism: Principles and Applications (John Wiley & Sons).
  3. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
    [Crossref] [PubMed]
  4. T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
    [Crossref]
  5. E. Plum, “Extrinsic chirality: Tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
    [Crossref]
  6. S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
    [Crossref]
  7. Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25(5), 5480–5487 (2017).
    [Crossref] [PubMed]
  8. A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries,” J. Phys. Chem. C 115(16), 7914–7923 (2011).
    [Crossref]
  9. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
    [Crossref] [PubMed]
  10. B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
    [Crossref] [PubMed]
  11. R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
    [Crossref]
  12. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref] [PubMed]
  13. M. Schäferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration,” ACS Photonics 3(6), 1076–1084 (2016).
    [Crossref]
  14. N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
    [Crossref]
  15. N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
    [Crossref]
  16. Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
    [Crossref]
  17. Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
    [Crossref]
  18. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
    [Crossref] [PubMed]
  19. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
    [Crossref] [PubMed]
  20. T. Wang, Y. Wang, L. Luo, L. Wang, and Z. Zhang, “Tunable circular dichroism of achiral graphene plasmonic structures,” Plasmonics 12(3), 829–833 (2017).
    [Crossref]
  21. Y. Bao, S. Zu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
    [Crossref]
  22. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  23. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  24. N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
    [Crossref] [PubMed]
  25. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
    [Crossref]

2017 (3)

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25(5), 5480–5487 (2017).
[Crossref] [PubMed]

T. Wang, Y. Wang, L. Luo, L. Wang, and Z. Zhang, “Tunable circular dichroism of achiral graphene plasmonic structures,” Plasmonics 12(3), 829–833 (2017).
[Crossref]

2016 (3)

M. Schäferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

E. Plum, “Extrinsic chirality: Tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
[Crossref]

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

2015 (3)

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Y. Bao, S. Zu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

2014 (2)

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

2013 (3)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[Crossref] [PubMed]

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[Crossref]

2011 (3)

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries,” J. Phys. Chem. C 115(16), 7914–7923 (2011).
[Crossref]

2010 (4)

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

2007 (1)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

2003 (1)

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Arakawa, Y.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

Aubard, J.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Aussenegg, F. R.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Bahng, J. H.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Bao, Y.

Y. Bao, S. Zu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

Bar Elli, O.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[Crossref]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Baumeister, E.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Chaikin, Y.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[Crossref] [PubMed]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Elvati, P.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Engheta, N.

M. Schäferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Fan, Z.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Fang, Z.

Y. Bao, S. Zu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

Félidj, N.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Fu, T.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Giessen, H.

M. Schäferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

Govorov, A. O.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[Crossref] [PubMed]

A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries,” J. Phys. Chem. C 115(16), 7914–7923 (2011).
[Crossref]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Gu, G.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hendry, E.

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Hohenau, A.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Hong, X.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Huang, L.

Huang, S.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Iwamoto, S.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

Ji, Y.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Jiang, S.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kim, K.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Kotov, N. A.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Krenn, J. R.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Lee, J.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Leitner, A.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Levi, G.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Li, H.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Li, J.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Liu, G.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Liu, M.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Liu, R.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Liu, X.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Liu, Y.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Liu, Z.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Luo, L.

T. Wang, Y. Wang, L. Luo, L. Wang, and Z. Zhang, “Tunable circular dichroism of achiral graphene plasmonic structures,” Plasmonics 12(3), 829–833 (2017).
[Crossref]

Maoz, B. M.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[Crossref] [PubMed]

Markovich, G.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[Crossref] [PubMed]

Meinzer, N.

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[Crossref]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Naik, R. R.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Ota, Y.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

Pan, P.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Plum, E.

E. Plum, “Extrinsic chirality: Tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Qu, Y.

Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25(5), 5480–5487 (2017).
[Crossref] [PubMed]

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Qu, Z. B.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Schäferling, M.

M. Schäferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

Schider, G.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Slocik, J. M.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Suzuki, N.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Tajiri, T.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

Takahashi, S.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Tatebayashi, J.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

Tesler, A. B.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Violi, A.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Wang, F.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Wang, G.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Wang, L.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25(5), 5480–5487 (2017).
[Crossref] [PubMed]

T. Wang, Y. Wang, L. Luo, L. Wang, and Z. Zhang, “Tunable circular dichroism of achiral graphene plasmonic structures,” Plasmonics 12(3), 829–833 (2017).
[Crossref]

Wang, P.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Wang, R. Y.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Wang, T.

T. Wang, Y. Wang, L. Luo, L. Wang, and Z. Zhang, “Tunable circular dichroism of achiral graphene plasmonic structures,” Plasmonics 12(3), 829–833 (2017).
[Crossref]

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Wang, Y.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

T. Wang, Y. Wang, L. Luo, L. Wang, and Z. Zhang, “Tunable circular dichroism of achiral graphene plasmonic structures,” Plasmonics 12(3), 829–833 (2017).
[Crossref]

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Weiss, T.

M. Schäferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

Wu, X.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Yeom, B.

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

Yu, M.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Zhai, D.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Zhang, D.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Zhang, W.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Zhang, X.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Zhang, Y.

Y. Bao, S. Zu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

Zhang, Z.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25(5), 5480–5487 (2017).
[Crossref] [PubMed]

T. Wang, Y. Wang, L. Luo, L. Wang, and Z. Zhang, “Tunable circular dichroism of achiral graphene plasmonic structures,” Plasmonics 12(3), 829–833 (2017).
[Crossref]

Zhao, W.

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

Zu, S.

Y. Bao, S. Zu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

ACS Nano (1)

N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, and N. A. Kotov, “Chiral graphene quantum dots,” ACS Nano 10(2), 1744–1755 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

Y. Bao, S. Zu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

M. Schäferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

Adv. Mater. (1)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

E. Plum, “Extrinsic chirality: Tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
[Crossref]

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

J. Phys. Chem. C (3)

R. Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, and X. Zhang, “Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters,” J. Phys. Chem. C 118(18), 9690–9695 (2014).
[Crossref]

A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries,” J. Phys. Chem. C 115(16), 7914–7923 (2011).
[Crossref]

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Nano Lett. (2)

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, and G. Markovich, “Amplification of chiroptical activity of chiral biomolecules by surface plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Phys. Rev. Lett. (1)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Plasmonics (1)

T. Wang, Y. Wang, L. Luo, L. Wang, and Z. Zhang, “Tunable circular dichroism of achiral graphene plasmonic structures,” Plasmonics 12(3), 829–833 (2017).
[Crossref]

Science (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Other (2)

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University).

N. Berova and K. Nakanishi, Circular Dichroism: Principles and Applications (John Wiley & Sons).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The schematic of enhancing chiral signal with graphene based achiral nanoring with liner polarization light excitation; (b) parameters of single GAN; (c) the handedness definition of chiral near-fields: when the bias voltage is Vb1>Vb2 >Vb3, the near field is left handed (LCF), reversely, when the bias voltage is Vb1<Vb2 <Vb3 the near-field is right handed (RCF).
Fig. 2
Fig. 2 The optical properties of GAN with Vb1 = 0.4 eV, Vb2 = 0.5 eV, Vb3 = 0.6 eV for RCF and Vb1 = 0.6 eV, Vb2 = 0.5 eV, Vb3 = 0.4 eV for LCF under linear polarization wave excitation: (a) the transmission spectra, (b) the charge distribution, (c) the enhanced electric field distribution, and (d) the enhanced magnetic field distribution of left handed and right handed GAN.
Fig. 3
Fig. 3 Chiral near-fields of GAN with Vb1 = 0.4 eV, Vb2 = 0.5 eV, Vb3 = 0.6 eV for RCF and Vb1 = 0.6 eV, Vb2 = 0.5 eV, Vb3 = 0.4 eV for LCF at liner polarization wave excitation at 8.6 μm. (a) schematic of excitation; (b) chiral near-fields and chiral near-fields difference distribution of GAN at different position.
Fig. 4
Fig. 4 Enhancing chiral signal with GAN: (a) The chiral medium induces changes into the transmission spectrum depending on its handedness; (b) integral of optical chirality C of both handedness; (c) chiroptical response of chiral medium under chiral near-fields of GAN excitation and CP wave excitation, insets is zoom in of chiral response with CP wave excitation; (d) enhance factor of both enantiomer.
Fig. 5
Fig. 5 Tuning chiral near-fields and enhancement with Fermi energy of graphene: (a) chiral near-fields with the increasing of Vb1 from 0.6 eV to 0.8 eV at step of 0.05 eV in LCF; (b) The optical chirality C spectra with increasing of Fermi energy: left handed Vb1, right handed Vb3, from 0.6 eV to 0.8 eV at step of 0.05 eV; (c) enhance factor with increasing of Fermi energy corresponding to C spectra.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C ε 0 2 E × E + 1 2 μ 0 B × B ,
C = ε 0 ω 2 Im ( E * B ) ,
C CPL ± = ± ε 0 ω 2 c | E | 2 ,
σ ( ω ) = 2 i e 2 k B T π 2 ( ω + i τ 1 ) ln [ 2 cos h ( E F 2 k B T ) ] + e 2 4 π { 1 2 + 1 π arc tan ( ω 2 E F 2 k B T ) i 2 π ln [ ( ω + 2 E F ) 2 ( ω 2 E F ) 2 + ( 2 k B T ) 2 ] } ,
D = ε 0 ε E i κ c H ,
B = μ 0 μ H + i κ c E ,
n ± = ε μ ± κ ,
C ^ C | C CPL | = c Im ( E * B ) | E CPL | 2 ,
CR solid line = T L-GAN+chiral medium y y T R-GAN+chiral medium y y ,
CR dotted line = T chiral medium + + T chiral medium ,
Enhancement factor = CR solid line CR dotted line .

Metrics