Abstract

We report a new efficient light guidance along a liquid core using an open V-groove. Guiding properties were analyzed using finite element method in terms of the single mode guidance condition, and the corresponding modal birefringence. We experimentally demonstrated a silica V-groove fiber with an opening angle of 40°, which was spliced to single mode fibers at both ends. A liquid with the refractive index of 1.455 was filled to serve as a core along a maximum length of 47cm. We confirmed the single mode guidance and birefringence consistent to theory, which will enable polarimetric liquid sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoliter liquid refractive index sensing using a silica V-groove fiber interferometer

Quan Chai, Hyeonwoo Lee, Seongjin Hong, Yongsoo Lee, Junbum Park, Jianzhong Zhang, and Kyunghwan Oh
Photon. Res. 7(7) 792-797 (2019)

Highly birefringent lamellar core fiber

A. Wang, A. K. George, J. F. Liu, and J. C. Knight
Opt. Express 13(16) 5988-5993 (2005)

Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications

Jiyoung Park, Doo-Eui Kang, Bjorn Paulson, Tavakol Nazari, and Kyunghwan Oh
Opt. Express 22(14) 17320-17330 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-Coated PDMS microfluidic channels,” IEEE Photonics Technol. Lett. 21(15), 1057–1059 (2009).
    [Crossref] [PubMed]
  2. J. Park, D. E. Kang, B. Paulson, T. Nazari, and K. Oh, “Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications,” Opt. Express 22(14), 17320–17330 (2014).
    [Crossref] [PubMed]
  3. L. J. Gimbert and P. J. Worsfold, “Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection,” Trends Anal. Chem,;TrAC 26, 914–930 (2007).
  4. E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission,” IEEE Photonics Technol. Lett. 22(15), 1147–1149 (2010).
    [Crossref] [PubMed]
  5. N. Gopalakrishnan, K. S. Sagar, M. B. Christiansen, M. E. Vigild, S. Ndoni, and A. Kristensen, “UV patterned nanoporous solid-liquid core waveguides,” Opt. Express 18(12), 12903–12908 (2010).
    [Crossref] [PubMed]
  6. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel fiber,” Opt. Express 13(10), 3890–3895 (2005).
    [Crossref] [PubMed]
  7. A. Yimit, A. G. Rossberg, T. Amemiya, and K. Itoh, “Thin film composite optical waveguides for sensor applications: a review,” Talanta 65(5), 1102–1109 (2005).
    [Crossref] [PubMed]
  8. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
    [Crossref]
  9. X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, and Y. Deng, “A simple method for estimating mutual diffusion coefficients of ionicliquids-water based on an optofluidic chip,” Fluid Phase Equilib. 366, 9–15 (2014).
    [Crossref]
  10. L. Dong and H. Jiang, “Tunable and movable liquid microlens in situ fabricated within microfluidic channels,” Appl. Phys. Lett. 91(4), 041109 (2007).
    [Crossref]
  11. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
    [Crossref] [PubMed]
  12. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
    [Crossref]
  13. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
    [Crossref]
  14. S. Vandewiele, T. Brans, L. Van Landschoot, K. Komorowska, S. Verstuyft, A. Subramanian, C. Hu, F. Beunis, and R. Baets, “Single-mode air-clad liquid-core waveguides on a surface energy patterned substrate,” Opt. Lett. 39(16), 4942–4945 (2014).
    [Crossref] [PubMed]
  15. J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
    [Crossref]
  16. A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
    [Crossref]
  17. C. W. Wu and G. C. Gong, “Fabrication of PDMS-based nitrite sensors using Teflon AF coating microchannels,” IEEE Sens. J. 8(5), 465–469 (2008).
    [Crossref]
  18. R. Kostecki, H. E. Heidepriem, C. Davis, G. McAdam, S. C. W. Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
    [Crossref]
  19. E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
    [Crossref] [PubMed]
  20. S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
    [Crossref] [PubMed]
  21. Y. Zhang, C. Shi, C. Gua, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
    [Crossref]
  22. A. M. R. Pinto and M. L. Amo, “Photonic crystal fibers for sensing applications,” Sensors (Basel) 2012, 1–12 (2012).
    [Crossref]
  23. X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27(5), 977–984 (2010).
    [Crossref] [PubMed]
  24. S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
    [Crossref]
  25. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  26. “Photonic Crystal Fibre Science,Inc,” http://www.mpl.mpg.de/en/russell/research-old/topics/fabrication.html
  27. F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
    [Crossref] [PubMed]
  28. J. Stone, “Optical Transmission in Liquid‐Core Quartz Fibers,” Appl. Phys. Lett. 20(7), 239–241 (1972).
    [Crossref]
  29. R. Altkorn, I. Koev, R. P. Van Duyne, and M. Litorja, “Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy,” Appl. Opt. 36(34), 8992–8998 (1997).
    [Crossref] [PubMed]
  30. H. Schmidt, “Liquid-Core Waveguide Sensors,” in Optical Guided-Wave Chemical and Biosensors II, M. Zourob and A. Lakhtakia, eds. (Springer, 2010).
  31. S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36(34), 9075–9082 (1997).
    [Crossref] [PubMed]
  32. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
    [Crossref]
  33. “COMSOL Inc.,” http://www.comsol.com/ .
  34. W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” J. Hopkins Apl. Tech. D. 19, 293–298 (1998).
  35. “Cargille-Sacher Laboratories, Inc,” http://www.cargille.com/opticalintro.shtml .
  36. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]
  37. P. Hlubina, D. Ciprian, and M. Kadulova, “Wide spectral range measurement of modal birefringence in polarization-maintaining fibres,” Meas. Sci. Technol. 20(2), 025301 (2009).
    [Crossref]
  38. K. Oh and U. C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (John Wiley & Sons, 2012)
  39. P. R. Chaudhuri, V. Paulose, C. L. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization,” IEEE Photonics Technol. Lett. 16(5), 1301–1303 (2004).
    [Crossref]
  40. K. S. Hong, S. D. Lim, H. S. Park, and S. K. Kim, “Analysis on Transition between Index- and Bandgap-guided Modes in Photonic Crystal Fiber,” J. Opt. Soc. Korea 20(6), 733–738 (2016).
    [Crossref]
  41. Y. S. Lee, C. G. Lee, Y. Jung, M. Oh, and S. Kim, “Highly Birefringent and Dispersion Compensating Photonic Crystal Fiber Based on Double Line Defect Core,” J. Opt. Soc. Korea 20(5), 567–574 (2016).
    [Crossref]
  42. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
    [Crossref] [PubMed]
  43. “Harvard Apparatus, “ http://www.kjemi.com/artikkel/2259/pump-11-plus-single-or-dual-syringes/ .
  44. Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
    [Crossref] [PubMed]
  45. S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient,” Opt. Eng. 52(11), 112105 (2013).
    [Crossref]
  46. Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
    [Crossref] [PubMed]
  47. J. Tian, D. Kannangara, X. Li, and W. Shen, “Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency,” Lab Chip 10(17), 2258–2264 (2010).
    [Crossref] [PubMed]
  48. M. S. Khan, D. Kannangara, G. Garnier, and W. Shen, “Effect of liquid droplet impact velocity on liquid wicking kinetics in surface V-grooves,” Chem. Eng. Sci. 66(23), 6120–6127 (2011).
    [Crossref]
  49. Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
    [Crossref]
  50. R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
    [Crossref]
  51. A. Wayne Roberts, Introductory Calculus with Analytic Geometry and Linear Algebra, (Academic, January 1972).
  52. A. J. Chung and D. Erickson, “Optofluidic waveguides for reconfigurable photonic systems,” Opt. Express 19(9), 8602–8609 (2011).
    [Crossref] [PubMed]
  53. F. M. Cox, A. Argyros, and M. C. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [Crossref] [PubMed]
  54. R. D. Waterbury, W. Yao, and R. H. Byrne, “Long path length absorbance spectroscopy: trace analysis of Fe (II) using a 4.5 m liquid core waveguide,” Anal. Chim. Acta 357(1), 99–102 (1997).
    [Crossref]
  55. “Thorlabs, Inc.,” http://www.thorlabs.com/ .
  56. M. Johnson, “Poincareé sphere representation of birefringent networks,” Appl. Opt. 20(12), 2075–2080 (1981).
    [Crossref] [PubMed]

2017 (1)

Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (1)

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

2014 (5)

Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
[Crossref]

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

J. Park, D. E. Kang, B. Paulson, T. Nazari, and K. Oh, “Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications,” Opt. Express 22(14), 17320–17330 (2014).
[Crossref] [PubMed]

X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, and Y. Deng, “A simple method for estimating mutual diffusion coefficients of ionicliquids-water based on an optofluidic chip,” Fluid Phase Equilib. 366, 9–15 (2014).
[Crossref]

S. Vandewiele, T. Brans, L. Van Landschoot, K. Komorowska, S. Verstuyft, A. Subramanian, C. Hu, F. Beunis, and R. Baets, “Single-mode air-clad liquid-core waveguides on a surface energy patterned substrate,” Opt. Lett. 39(16), 4942–4945 (2014).
[Crossref] [PubMed]

2013 (1)

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient,” Opt. Eng. 52(11), 112105 (2013).
[Crossref]

2012 (2)

2011 (4)

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

M. S. Khan, D. Kannangara, G. Garnier, and W. Shen, “Effect of liquid droplet impact velocity on liquid wicking kinetics in surface V-grooves,” Chem. Eng. Sci. 66(23), 6120–6127 (2011).
[Crossref]

A. J. Chung and D. Erickson, “Optofluidic waveguides for reconfigurable photonic systems,” Opt. Express 19(9), 8602–8609 (2011).
[Crossref] [PubMed]

2010 (4)

J. Tian, D. Kannangara, X. Li, and W. Shen, “Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency,” Lab Chip 10(17), 2258–2264 (2010).
[Crossref] [PubMed]

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission,” IEEE Photonics Technol. Lett. 22(15), 1147–1149 (2010).
[Crossref] [PubMed]

N. Gopalakrishnan, K. S. Sagar, M. B. Christiansen, M. E. Vigild, S. Ndoni, and A. Kristensen, “UV patterned nanoporous solid-liquid core waveguides,” Opt. Express 18(12), 12903–12908 (2010).
[Crossref] [PubMed]

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27(5), 977–984 (2010).
[Crossref] [PubMed]

2009 (2)

P. Hlubina, D. Ciprian, and M. Kadulova, “Wide spectral range measurement of modal birefringence in polarization-maintaining fibres,” Meas. Sci. Technol. 20(2), 025301 (2009).
[Crossref]

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-Coated PDMS microfluidic channels,” IEEE Photonics Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

2008 (2)

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[Crossref] [PubMed]

C. W. Wu and G. C. Gong, “Fabrication of PDMS-based nitrite sensors using Teflon AF coating microchannels,” IEEE Sens. J. 8(5), 465–469 (2008).
[Crossref]

2007 (4)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

L. Dong and H. Jiang, “Tunable and movable liquid microlens in situ fabricated within microfluidic channels,” Appl. Phys. Lett. 91(4), 041109 (2007).
[Crossref]

L. J. Gimbert and P. J. Worsfold, “Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection,” Trends Anal. Chem,;TrAC 26, 914–930 (2007).

Y. Zhang, C. Shi, C. Gua, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

2006 (1)

2005 (3)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel fiber,” Opt. Express 13(10), 3890–3895 (2005).
[Crossref] [PubMed]

A. Yimit, A. G. Rossberg, T. Amemiya, and K. Itoh, “Thin film composite optical waveguides for sensor applications: a review,” Talanta 65(5), 1102–1109 (2005).
[Crossref] [PubMed]

2004 (2)

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[Crossref]

P. R. Chaudhuri, V. Paulose, C. L. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization,” IEEE Photonics Technol. Lett. 16(5), 1301–1303 (2004).
[Crossref]

2003 (2)

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
[Crossref]

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

2001 (1)

1998 (1)

W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” J. Hopkins Apl. Tech. D. 19, 293–298 (1998).

1997 (3)

1996 (2)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

1981 (1)

1972 (1)

J. Stone, “Optical Transmission in Liquid‐Core Quartz Fibers,” Appl. Phys. Lett. 20(7), 239–241 (1972).
[Crossref]

Ahmad, I.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Altkorn, R.

Amemiya, T.

A. Yimit, A. G. Rossberg, T. Amemiya, and K. Itoh, “Thin film composite optical waveguides for sensor applications: a review,” Talanta 65(5), 1102–1109 (2005).
[Crossref] [PubMed]

Amo, M. L.

A. M. R. Pinto and M. L. Amo, “Photonic crystal fibers for sensing applications,” Sensors (Basel) 2012, 1–12 (2012).
[Crossref]

André, R. M.

Argyros, A.

Atkin, D. M.

Baer, E.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient,” Opt. Eng. 52(11), 112105 (2013).
[Crossref]

Baets, R.

Baldwin, K.

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
[Crossref]

Bang, O.

Bartelt, H.

Beunis, F.

Birks, T. A.

Bjarklev, A.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Brans, T.

Brister, A.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient,” Opt. Eng. 52(11), 112105 (2013).
[Crossref]

Byrne, R. H.

R. D. Waterbury, W. Yao, and R. H. Byrne, “Long path length absorbance spectroscopy: trace analysis of Fe (II) using a 4.5 m liquid core waveguide,” Anal. Chim. Acta 357(1), 99–102 (1997).
[Crossref]

Callender, C. L.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Campbell, K.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[Crossref] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[Crossref]

Canning, J.

Cattaneo, F.

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
[Crossref]

Chaudhuri, P. R.

P. R. Chaudhuri, V. Paulose, C. L. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization,” IEEE Photonics Technol. Lett. 16(5), 1301–1303 (2004).
[Crossref]

Chen, B.

Cho, S. H.

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-Coated PDMS microfluidic channels,” IEEE Photonics Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

Christiansen, M. B.

Chu, J.

Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
[Crossref]

Chung, A. J.

Ciprian, D.

P. Hlubina, D. Ciprian, and M. Kadulova, “Wide spectral range measurement of modal birefringence in polarization-maintaining fibres,” Meas. Sci. Technol. 20(2), 025301 (2009).
[Crossref]

Cox, F. M.

Dallas, T.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Dasgupta, P. K.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Datta, A.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Davis, C.

Dellith, J.

Deng, Y.

X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, and Y. Deng, “A simple method for estimating mutual diffusion coefficients of ionicliquids-water based on an optofluidic chip,” Fluid Phase Equilib. 366, 9–15 (2014).
[Crossref]

Deng, Z.

Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
[Crossref] [PubMed]

Dhar, A.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Diemer, S.

Dong, L.

L. Dong and H. Jiang, “Tunable and movable liquid microlens in situ fabricated within microfluidic channels,” Appl. Phys. Lett. 91(4), 041109 (2007).
[Crossref]

Dong, Y.

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Dumais, P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Ebendorff-Heidepriem, H.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

Erickson, D.

Fainman, Y.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[Crossref] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[Crossref]

François, A.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

Fujita, M.

Fuss, W.

Gangopadhyay, S.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Gao, W.

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Garnier, G.

M. S. Khan, D. Kannangara, G. Garnier, and W. Shen, “Effect of liquid droplet impact velocity on liquid wicking kinetics in surface V-grooves,” Chem. Eng. Sci. 66(23), 6120–6127 (2011).
[Crossref]

Gimbert, L. J.

L. J. Gimbert and P. J. Worsfold, “Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection,” Trends Anal. Chem,;TrAC 26, 914–930 (2007).

Godin, J.

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-Coated PDMS microfluidic channels,” IEEE Photonics Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

Gong, G. C.

C. W. Wu and G. C. Gong, “Fabrication of PDMS-based nitrite sensors using Teflon AF coating microchannels,” IEEE Sens. J. 8(5), 465–469 (2008).
[Crossref]

Gopalakrishnan, N.

Groisman, A.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[Crossref] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[Crossref]

Groothoff, N.

Gu, C.

Gua, C.

Y. Zhang, C. Shi, C. Gua, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Haisch, M.

Hansen, O.

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission,” IEEE Photonics Technol. Lett. 22(15), 1147–1149 (2010).
[Crossref] [PubMed]

He, X.

X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, and Y. Deng, “A simple method for estimating mutual diffusion coefficients of ionicliquids-water based on an optofluidic chip,” Fluid Phase Equilib. 366, 9–15 (2014).
[Crossref]

Heidepriem, H. E.

Hering, P.

Hlubina, P.

P. Hlubina, D. Ciprian, and M. Kadulova, “Wide spectral range measurement of modal birefringence in polarization-maintaining fibres,” Meas. Sci. Technol. 20(2), 025301 (2009).
[Crossref]

Hoffmann, P.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

Holtz, M.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Hong, K. S.

Hsieh, J.

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
[Crossref]

Hu, C.

Hu, Y.

Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
[Crossref]

Huang, W.

Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
[Crossref]

In-Yong, E.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Itoh, K.

A. Yimit, A. G. Rossberg, T. Amemiya, and K. Itoh, “Thin film composite optical waveguides for sensor applications: a review,” Talanta 65(5), 1102–1109 (2005).
[Crossref] [PubMed]

Ji, S.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient,” Opt. Eng. 52(11), 112105 (2013).
[Crossref]

Jiang, H.

L. Dong and H. Jiang, “Tunable and movable liquid microlens in situ fabricated within microfluidic channels,” Appl. Phys. Lett. 91(4), 041109 (2007).
[Crossref]

Johnson, M.

Jung, R.

Jung, Y.

Kadulova, M.

P. Hlubina, D. Ciprian, and M. Kadulova, “Wide spectral range measurement of modal birefringence in polarization-maintaining fibres,” Meas. Sci. Technol. 20(2), 025301 (2009).
[Crossref]

Kang, D. E.

Kannangara, D.

M. S. Khan, D. Kannangara, G. Garnier, and W. Shen, “Effect of liquid droplet impact velocity on liquid wicking kinetics in surface V-grooves,” Chem. Eng. Sci. 66(23), 6120–6127 (2011).
[Crossref]

J. Tian, D. Kannangara, X. Li, and W. Shen, “Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency,” Lab Chip 10(17), 2258–2264 (2010).
[Crossref] [PubMed]

Kawanishi, S.

Keeley, J. M.

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission,” IEEE Photonics Technol. Lett. 22(15), 1147–1149 (2010).
[Crossref] [PubMed]

Khan, M. S.

M. S. Khan, D. Kannangara, G. Garnier, and W. Shen, “Effect of liquid droplet impact velocity on liquid wicking kinetics in surface V-grooves,” Chem. Eng. Sci. 66(23), 6120–6127 (2011).
[Crossref]

Kim, S.

Kim, S. K.

Klantsataya, E.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

Klein, S.

Knight, J. C.

Koev, I.

Komorowska, K.

Kong, W.

X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, and Y. Deng, “A simple method for estimating mutual diffusion coefficients of ionicliquids-water based on an optofluidic chip,” Fluid Phase Equilib. 366, 9–15 (2014).
[Crossref]

Kostecki, R.

Kristensen, A.

Krupenkine, T.

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
[Crossref]

Kuban, P.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Kubota, H.

Large, M. C.

Ledderhof, C. J.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Lee, C. G.

Lee, Y. S.

Levy, U.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[Crossref] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[Crossref]

Li, G.

Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
[Crossref]

Li, H.

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Li, J.

Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
[Crossref]

Li, X.

J. Tian, D. Kannangara, X. Li, and W. Shen, “Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency,” Lab Chip 10(17), 2258–2264 (2010).
[Crossref] [PubMed]

Lim, S. D.

Litorja, M.

Liu, S.

Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
[Crossref] [PubMed]

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Lo, Y. H.

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-Coated PDMS microfluidic channels,” IEEE Photonics Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

Lu, C.

P. R. Chaudhuri, V. Paulose, C. L. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization,” IEEE Photonics Technol. Lett. 16(5), 1301–1303 (2004).
[Crossref]

Lu, X.

Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
[Crossref] [PubMed]

Lunt, E. J.

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission,” IEEE Photonics Technol. Lett. 22(15), 1147–1149 (2010).
[Crossref] [PubMed]

Lyytikainen, K.

Mach, P.

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
[Crossref]

Mackey, M.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient,” Opt. Eng. 52(11), 112105 (2013).
[Crossref]

Mann, J. A.

R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
[Crossref]

Manor, R.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Martelli, C.

McAdam, G.

Measor, P.

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission,” IEEE Photonics Technol. Lett. 22(15), 1147–1149 (2010).
[Crossref] [PubMed]

Mei, J.

Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
[Crossref] [PubMed]

Meister, J.

Monro, T. M.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

R. Kostecki, H. E. Heidepriem, C. Davis, G. McAdam, S. C. W. Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

Mookherjea, S.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[Crossref]

Nazari, T.

Ndoni, S.

Newhouse, R.

Nielsen, K.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Noad, J. P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Oh, K.

Oh, M.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Pang, L.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[Crossref] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[Crossref]

Park, H. S.

Park, J.

Paulose, V.

P. R. Chaudhuri, V. Paulose, C. L. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization,” IEEE Photonics Technol. Lett. 16(5), 1301–1303 (2004).
[Crossref]

Paulson, B.

Perrella, C.

Pinto, A. M. R.

A. M. R. Pinto and M. L. Amo, “Photonic crystal fibers for sensing applications,” Sensors (Basel) 2012, 1–12 (2012).
[Crossref]

Ponting, M.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient,” Opt. Eng. 52(11), 112105 (2013).
[Crossref]

Psaltis, D.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[Crossref]

Rogers, J. A.

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
[Crossref]

Rossberg, A. G.

A. Yimit, A. G. Rossberg, T. Amemiya, and K. Itoh, “Thin film composite optical waveguides for sensor applications: a review,” Talanta 65(5), 1102–1109 (2005).
[Crossref] [PubMed]

Russell, P. S.

Rye, R. R.

R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
[Crossref]

Sagar, K. S.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission,” IEEE Photonics Technol. Lett. 22(15), 1147–1149 (2010).
[Crossref] [PubMed]

Seballos, L.

Y. Zhang, C. Shi, C. Gua, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Shao, Q.

X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, and Y. Deng, “A simple method for estimating mutual diffusion coefficients of ionicliquids-water based on an optofluidic chip,” Fluid Phase Equilib. 366, 9–15 (2014).
[Crossref]

Shen, W.

M. S. Khan, D. Kannangara, G. Garnier, and W. Shen, “Effect of liquid droplet impact velocity on liquid wicking kinetics in surface V-grooves,” Chem. Eng. Sci. 66(23), 6120–6127 (2011).
[Crossref]

J. Tian, D. Kannangara, X. Li, and W. Shen, “Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency,” Lab Chip 10(17), 2258–2264 (2010).
[Crossref] [PubMed]

Shi, C.

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27(5), 977–984 (2010).
[Crossref] [PubMed]

Y. Zhang, C. Shi, C. Gua, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Smith, S. C. W.

Sørensen, T.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Stone, J.

J. Stone, “Optical Transmission in Liquid‐Core Quartz Fibers,” Appl. Phys. Lett. 20(7), 239–241 (1972).
[Crossref]

Subramanian, A.

Sun, T.

Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
[Crossref] [PubMed]

Suzuki, K.

Tanaka, M.

Tang, P.

Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
[Crossref] [PubMed]

Temkin, H.

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

Thomas, M. E.

W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” J. Hopkins Apl. Tech. D. 19, 293–298 (1998).

Tian, J.

Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
[Crossref] [PubMed]

Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
[Crossref] [PubMed]

J. Tian, D. Kannangara, X. Li, and W. Shen, “Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency,” Lab Chip 10(17), 2258–2264 (2010).
[Crossref] [PubMed]

Tropf, W. J.

W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” J. Hopkins Apl. Tech. D. 19, 293–298 (1998).

Van Duyne, R. P.

Van Landschoot, L.

Vandewiele, S.

Verstuyft, S.

Vigild, M. E.

Wang, F.

Wang, J.

Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
[Crossref] [PubMed]

Warren-Smith, S. C.

Waterbury, R. D.

R. D. Waterbury, W. Yao, and R. H. Byrne, “Long path length absorbance spectroscopy: trace analysis of Fe (II) using a 4.5 m liquid core waveguide,” Anal. Chim. Acta 357(1), 99–102 (1997).
[Crossref]

Wheeler, D.

Worsfold, P. J.

L. J. Gimbert and P. J. Worsfold, “Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection,” Trends Anal. Chem,;TrAC 26, 914–930 (2007).

Wu, B.

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission,” IEEE Photonics Technol. Lett. 22(15), 1147–1149 (2010).
[Crossref] [PubMed]

Wu, C. W.

C. W. Wu and G. C. Gong, “Fabrication of PDMS-based nitrite sensors using Teflon AF coating microchannels,” IEEE Sens. J. 8(5), 465–469 (2008).
[Crossref]

Xie, H.

Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
[Crossref]

Yang, S.

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
[Crossref]

Yang, X.

Yao, W.

R. D. Waterbury, W. Yao, and R. H. Byrne, “Long path length absorbance spectroscopy: trace analysis of Fe (II) using a 4.5 m liquid core waveguide,” Anal. Chim. Acta 357(1), 99–102 (1997).
[Crossref]

Ye, Q.

Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
[Crossref] [PubMed]

Yimit, A.

A. Yimit, A. G. Rossberg, T. Amemiya, and K. Itoh, “Thin film composite optical waveguides for sensor applications: a review,” Talanta 65(5), 1102–1109 (2005).
[Crossref] [PubMed]

Yin, K.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient,” Opt. Eng. 52(11), 112105 (2013).
[Crossref]

Yost, F. G.

R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
[Crossref]

Yu, L.

X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, and Y. Deng, “A simple method for estimating mutual diffusion coefficients of ionicliquids-water based on an optofluidic chip,” Fluid Phase Equilib. 366, 9–15 (2014).
[Crossref]

Yuan, W.

Yuan, Y.

Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
[Crossref] [PubMed]

Zamek, S.

Zhang, C.

Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
[Crossref] [PubMed]

Zhang, H.

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Zhang, J. Z.

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27(5), 977–984 (2010).
[Crossref] [PubMed]

Y. Zhang, C. Shi, C. Gua, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Zhang, Q.

Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
[Crossref] [PubMed]

Zhang, X.

X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, and Y. Deng, “A simple method for estimating mutual diffusion coefficients of ionicliquids-water based on an optofluidic chip,” Fluid Phase Equilib. 366, 9–15 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, C. Shi, C. Gua, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Zhao, C. L.

P. R. Chaudhuri, V. Paulose, C. L. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization,” IEEE Photonics Technol. Lett. 16(5), 1301–1303 (2004).
[Crossref]

Zhong, L.

Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
[Crossref] [PubMed]

Zhou, W.

Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
[Crossref] [PubMed]

Zhu, Z.

Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
[Crossref]

Anal. Chim. Acta (1)

R. D. Waterbury, W. Yao, and R. H. Byrne, “Long path length absorbance spectroscopy: trace analysis of Fe (II) using a 4.5 m liquid core waveguide,” Anal. Chim. Acta 357(1), 99–102 (1997).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (5)

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[Crossref]

L. Dong and H. Jiang, “Tunable and movable liquid microlens in situ fabricated within microfluidic channels,” Appl. Phys. Lett. 91(4), 041109 (2007).
[Crossref]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Y. Zhang, C. Shi, C. Gua, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

J. Stone, “Optical Transmission in Liquid‐Core Quartz Fibers,” Appl. Phys. Lett. 20(7), 239–241 (1972).
[Crossref]

Chem. Eng. Sci. (1)

M. S. Khan, D. Kannangara, G. Garnier, and W. Shen, “Effect of liquid droplet impact velocity on liquid wicking kinetics in surface V-grooves,” Chem. Eng. Sci. 66(23), 6120–6127 (2011).
[Crossref]

Fluid Phase Equilib. (1)

X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, and Y. Deng, “A simple method for estimating mutual diffusion coefficients of ionicliquids-water based on an optofluidic chip,” Fluid Phase Equilib. 366, 9–15 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (4)

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-Coated PDMS microfluidic channels,” IEEE Photonics Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission,” IEEE Photonics Technol. Lett. 22(15), 1147–1149 (2010).
[Crossref] [PubMed]

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, and J. A. Rogers, “Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,” IEEE Photonics Technol. Lett. 15(1), 81–83 (2003).
[Crossref]

P. R. Chaudhuri, V. Paulose, C. L. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization,” IEEE Photonics Technol. Lett. 16(5), 1301–1303 (2004).
[Crossref]

IEEE Sens. J. (2)

A. Datta, E. In-Yong, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon‎,” IEEE Sens. J. 3(6), 788–795 (2003).
[Crossref]

C. W. Wu and G. C. Gong, “Fabrication of PDMS-based nitrite sensors using Teflon AF coating microchannels,” IEEE Sens. J. 8(5), 465–469 (2008).
[Crossref]

J. Biomed. Opt. (1)

Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, and J. Tian, “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection,” J. Biomed. Opt. 21(1), 15003 (2016).
[Crossref] [PubMed]

J. Hopkins Apl. Tech. D. (1)

W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” J. Hopkins Apl. Tech. D. 19, 293–298 (1998).

J. Lightwave Technol. (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (2)

Lab Chip (1)

J. Tian, D. Kannangara, X. Li, and W. Shen, “Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency,” Lab Chip 10(17), 2258–2264 (2010).
[Crossref] [PubMed]

Langmuir (1)

R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
[Crossref]

Meas. Sci. Technol. (1)

P. Hlubina, D. Ciprian, and M. Kadulova, “Wide spectral range measurement of modal birefringence in polarization-maintaining fibres,” Meas. Sci. Technol. 20(2), 025301 (2009).
[Crossref]

Nat. Photonics (1)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Opt. Eng. (1)

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient,” Opt. Eng. 52(11), 112105 (2013).
[Crossref]

Opt. Express (9)

F. M. Cox, A. Argyros, and M. C. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[Crossref] [PubMed]

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[Crossref] [PubMed]

A. J. Chung and D. Erickson, “Optofluidic waveguides for reconfigurable photonic systems,” Opt. Express 19(9), 8602–8609 (2011).
[Crossref] [PubMed]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
[Crossref] [PubMed]

N. Gopalakrishnan, K. S. Sagar, M. B. Christiansen, M. E. Vigild, S. Ndoni, and A. Kristensen, “UV patterned nanoporous solid-liquid core waveguides,” Opt. Express 18(12), 12903–12908 (2010).
[Crossref] [PubMed]

J. Park, D. E. Kang, B. Paulson, T. Nazari, and K. Oh, “Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications,” Opt. Express 22(14), 17320–17330 (2014).
[Crossref] [PubMed]

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel fiber,” Opt. Express 13(10), 3890–3895 (2005).
[Crossref] [PubMed]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Sci. Rep. (1)

Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, “Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging,” Sci. Rep. 7(1), 2532 (2017).
[Crossref] [PubMed]

Sensors (Basel) (2)

A. M. R. Pinto and M. L. Amo, “Photonic crystal fibers for sensing applications,” Sensors (Basel) 2012, 1–12 (2012).
[Crossref]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

Surf. Coat. Tech. (1)

Z. Zhu, G. Li, J. Li, H. Xie, Y. Hu, J. Chu, and W. Huang, “Self-driven flow in surface grooves fabricated by femtosecond laser,” Surf. Coat. Tech. 242, 246–250 (2014).
[Crossref]

Talanta (1)

A. Yimit, A. G. Rossberg, T. Amemiya, and K. Itoh, “Thin film composite optical waveguides for sensor applications: a review,” Talanta 65(5), 1102–1109 (2005).
[Crossref] [PubMed]

Trends Anal. Chem,;TrAC (1)

L. J. Gimbert and P. J. Worsfold, “Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection,” Trends Anal. Chem,;TrAC 26, 914–930 (2007).

Other (8)

“Photonic Crystal Fibre Science,Inc,” http://www.mpl.mpg.de/en/russell/research-old/topics/fabrication.html

A. Wayne Roberts, Introductory Calculus with Analytic Geometry and Linear Algebra, (Academic, January 1972).

“Harvard Apparatus, “ http://www.kjemi.com/artikkel/2259/pump-11-plus-single-or-dual-syringes/ .

K. Oh and U. C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (John Wiley & Sons, 2012)

“Cargille-Sacher Laboratories, Inc,” http://www.cargille.com/opticalintro.shtml .

“COMSOL Inc.,” http://www.comsol.com/ .

H. Schmidt, “Liquid-Core Waveguide Sensors,” in Optical Guided-Wave Chemical and Biosensors II, M. Zourob and A. Lakhtakia, eds. (Springer, 2010).

“Thorlabs, Inc.,” http://www.thorlabs.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A schematic diagram of the proposed open V-groove liquid core fiber (VLCF). (a) direct light guidance through the liquid core (b) cross-sectional view of VLCF and key structural parameters: T, liquid core thickness, fiber diameter, D, opening angle, α, and the apex curvature radius, R. (c) perspective view of VLCF refractive index profile with liquid refractive index of nL, refractive index of clad, nC, and air refractive index of nair. (d) integration with single mode fibers (SMFs) by splicing them at both ends of VLCF.
Fig. 2
Fig. 2 (a) Coordinate system for VLCF and refractive index profile along x and y direction. (b). a parabolic segment at the apex with the liquid core thickness of T and the segment length of 2b (c) Electric field and Intensity distribution of fundamental H F 11 x mode in x direction. (d) Electric field and Intensity distribution of fundamental H E 11 y mode in y direction
Fig. 3
Fig. 3 Modal guidance conditions for the single mode (green area), multimode (white area), and no core mode propagation (gray area) on the opening angle (α) versus liquid core thickness (T) plane (a) at λ = 850 nm, and (b) at λ = 1550 nm. Refractive index information is described in the text. Birefringence for various opening angle (α) in the spectral range (c) λ = 800-1000nm and (d) 1450-1650nm.
Fig. 4
Fig. 4 Modal guidance conditions for the single mode (green area), multimode (white area), and no core mode propagation (gray area) on the liquid core refractive index (nL) versus liquid core thickness (T) plane (a) at λ = 850 nm and (b) at λ = 1550 nm. Here the groove opening angle was set to α = 40°. Birefringence for various liquid core refractive index in the spectral range of (d) λ = 800-1000 nm and (c) λ = 1450-1650 nm. (e) Birefringence as a function of the liquid core refractive index at λ = 850 nm and 1550 nm.
Fig. 5
Fig. 5 (a) Changes in the cross section of the V-groove fiber during the fabrication processes. (b) A schematic diagram of injecting the liquid in V-groove using a micro syringe pump and a tapered hollow optical fiber (inserted picture).
Fig. 6
Fig. 6 (a) experimental setup for measuring far field intensity pattern of the guided mode in the actual VLCFs. (b) Schematic diagram of seamlessly extending the liquid core simply by repeating the liquid injection along the V-groove fiber at ~10cm interval. (c) Near field intensity pattern of the guided mode at λ = 635 nm for a VCLF with T = 20 μm, (d) near field intensity pattern of the guided mode at λ = 850 nm, for a VLCF with T = 12 μm, (e) near field intensity pattern of the guided mode at λ = 1550 nm, for a VLCF with T = 7 μm. Here we used nL = 1.455.
Fig. 7
Fig. 7 (a) Experimental setup used to measure light polarization through SMF-VLCF-SMF assembly with liquid core length L = 10cm, T = 12μm, and nL = 1.455, α = 40°. (b) Polarization Ellipse represented by ellipticity (η) and azimuth (θ) angles. Here a and b are the semi-major axis and semi-minor axis, respectively (c) ellipticity (η) and azimuth (θ) angle versus time measured by the polarimeter using a laser at λ = 850 nm.

Tables (1)

Tables Icon

Table 1 Structural parameters of VLCF used in numerical analyses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H ( x , y , z , t ) = H ( x , y ) e i ( w t β z )
× ( n 2 ( ω ) × H ) k 0 2 H = 0

Metrics