Abstract

The chirality of photons plays a fundamental role in light-matter interactions. However, a limiting factor in photonic integrated circuits is the lack of a miniaturized component, which can distinguish the chirality in a low cost and integrated manner. Herein we numerically demonstrate a chirality-distinguishing beamsplitter that can address this challenge. It consists of an integrated polarization rotator and a linear polarization beamsplitter, which together can fulfill the task of distinguishing and splitting left- and right-handed quasi-circularly polarized modes on a chip with an ultra-broadband operation range from 1.45 μm to 1.65 μm. Owning to the reciprocity, the device can emit photons with selectable spin angular momentum depending on the chosen feeding waveguide. The device is compatible with complementary metal-oxide semiconductor technology and it may open up new avenues in the fields of on-chip nano-photonics, bio-photonics and quantum information science.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption

Dong Xiao, Yan Jun Liu, Shengtao Yin, Jianxun Liu, Wei Ji, Bing Wang, Dan Luo, Guixin Li, and Xiao Wei Sun
Opt. Express 26(19) 25305-25314 (2018)

Ultra-directional high-efficiency chiral silicon photonic circuits

Liang Fang, Hao-Zhi Luo, Xiao-Ping Cao, Shuang Zheng, Xin-Lun Cai, and Jian Wang
Optica 6(1) 61-66 (2019)

Optical gears in a nanophotonic directional coupler

Fengchun Zhang, Yao Liang, Heran Zhang, Yong Zhang, Xu-Guang Huang, Baohua Jia, and Songhao Liu
Opt. Express 25(10) 10972-10983 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Phys. Rev. 50(2), 115–125 (1936).
    [Crossref]
  2. K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
    [Crossref] [PubMed]
  3. C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
    [Crossref]
  4. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  5. R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
    [Crossref]
  6. Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
    [Crossref] [PubMed]
  7. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
    [Crossref] [PubMed]
  8. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
    [Crossref] [PubMed]
  9. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
    [Crossref] [PubMed]
  10. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
    [Crossref] [PubMed]
  11. M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
    [Crossref]
  12. H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
    [Crossref]
  13. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  14. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  15. M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
    [Crossref] [PubMed]
  16. Y. Ke, Y. Liu, Y. He, J. Zhou, H. Luo, and S. Wen, “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,” Appl. Phys. Lett. 107(4), 041107 (2015).
    [Crossref]
  17. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  18. M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
    [Crossref] [PubMed]
  19. Y. Yang, R. C. da Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
    [Crossref]
  20. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
    [Crossref] [PubMed]
  21. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
    [Crossref] [PubMed]
  22. M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
    [Crossref] [PubMed]
  23. Y. Fang, R. Verre, L. Shao, P. Nordlander, and M. Käll, “Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators,” Nano Lett. 16(8), 5183–5190 (2016).
    [Crossref] [PubMed]
  24. J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
    [Crossref] [PubMed]
  25. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
    [Crossref] [PubMed]
  26. Y. Lefier and T. Grosjean, “Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides,” Opt. Lett. 40(12), 2890–2893 (2015).
    [Crossref] [PubMed]
  27. R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
    [Crossref] [PubMed]
  28. F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving Light Handedness with an on-Chip Silicon Microdisk,” ACS Photonics 1(9), 762–767 (2014).
    [Crossref]
  29. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  30. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  31. L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
    [Crossref] [PubMed]
  32. Y. Liang and X. Huang, “Generation of two beams of light carrying spin and orbital angular momenta of opposite handedness,” Opt. Lett. 39(17), 5074–5077 (2014).
    [Crossref] [PubMed]
  33. Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
    [Crossref] [PubMed]
  34. Y. Liang, H. W. Wu, B. J. Huang, and X. G. Huang, “Light beams with selective angular momentum generated by hybrid plasmonic waveguides,” Nanoscale 6(21), 12360–12365 (2014).
    [Crossref] [PubMed]
  35. F. Zhang, Y. Liang, H. Zhang, Y. Zhang, X.-G. Huang, B. Jia, and S. Liu, “Optical gears in a nanophotonic directional coupler,” Opt. Express 25(10), 10972–10983 (2017).
    [Crossref] [PubMed]
  36. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]
  37. Y. Liang, F. Zhang, J. Gu, X. G. Huang, and S. Liu, “Integratable quarter-wave plates enable one-way angular momentum conversion,” Sci. Rep. 6(1), 24959 (2016).
    [Crossref] [PubMed]
  38. H. R. Zhang, F. C. Zhang, Y. Liang, X. G. Huang, and B. H. Jia, “Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry,” J. Phys. D Appl. Phys. 50(16), 165104 (2017).
    [Crossref]
  39. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
    [Crossref] [PubMed]
  40. Z. Liu, Y. Qiu, Q. Yang, and J. Tao, “Ultracompact wavelength and polarization directional coupler based on nanowire waveguides,” J. Mod. Opt. 64(15), 1538–1543 (2017).
    [Crossref]

2017 (3)

F. Zhang, Y. Liang, H. Zhang, Y. Zhang, X.-G. Huang, B. Jia, and S. Liu, “Optical gears in a nanophotonic directional coupler,” Opt. Express 25(10), 10972–10983 (2017).
[Crossref] [PubMed]

H. R. Zhang, F. C. Zhang, Y. Liang, X. G. Huang, and B. H. Jia, “Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry,” J. Phys. D Appl. Phys. 50(16), 165104 (2017).
[Crossref]

Z. Liu, Y. Qiu, Q. Yang, and J. Tao, “Ultracompact wavelength and polarization directional coupler based on nanowire waveguides,” J. Mod. Opt. 64(15), 1538–1543 (2017).
[Crossref]

2016 (7)

D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
[Crossref] [PubMed]

Y. Liang, F. Zhang, J. Gu, X. G. Huang, and S. Liu, “Integratable quarter-wave plates enable one-way angular momentum conversion,” Sci. Rep. 6(1), 24959 (2016).
[Crossref] [PubMed]

Y. Fang, R. Verre, L. Shao, P. Nordlander, and M. Käll, “Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators,” Nano Lett. 16(8), 5183–5190 (2016).
[Crossref] [PubMed]

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

2015 (7)

Y. Ke, Y. Liu, Y. He, J. Zhou, H. Luo, and S. Wen, “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,” Appl. Phys. Lett. 107(4), 041107 (2015).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Y. Lefier and T. Grosjean, “Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides,” Opt. Lett. 40(12), 2890–2893 (2015).
[Crossref] [PubMed]

2014 (8)

Y. Liang, H. W. Wu, B. J. Huang, and X. G. Huang, “Light beams with selective angular momentum generated by hybrid plasmonic waveguides,” Nanoscale 6(21), 12360–12365 (2014).
[Crossref] [PubMed]

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
[Crossref] [PubMed]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving Light Handedness with an on-Chip Silicon Microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Y. Liang and X. Huang, “Generation of two beams of light carrying spin and orbital angular momenta of opposite handedness,” Opt. Lett. 39(17), 5074–5077 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Yang, R. C. da Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

2012 (1)

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

2011 (2)

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (3)

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

2001 (1)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

1936 (1)

R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Adibi, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Aizpurua, J.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Albrecht, B.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

Alù, A.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Apuzzo, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Ayache, M.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Barber-Sanz, I.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving Light Handedness with an on-Chip Silicon Microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Beth, R. A.

R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Blaize, S.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

Bramati, A.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Cai, W.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Campbell, A. J.

Y. Yang, R. C. da Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

Cao, T.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Chamanzar, M.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Chen, Y. F.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Chiu, D. T.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Clarke, E.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

Coles, R. J.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Crozier, K. B.

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Cumming, B. P.

M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Cuscunà, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

da Costa, R. C.

Y. Yang, R. C. da Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

Dai, D.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Dixon, J. E.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

Edgar, J. S.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Esposito, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Fainman, Y.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Fang, Y.

Y. Fang, R. Verre, L. Shao, P. Nordlander, and M. Käll, “Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators,” Nano Lett. 16(8), 5183–5190 (2016).
[Crossref] [PubMed]

Farshchi, R.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Feng, L.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Fox, A. M.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

Fuchter, M. J.

Y. Yang, R. C. da Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Giacobino, E.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Glazov, M. M.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Govorov, A. O.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Grahn, H. T.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Griol, A.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving Light Handedness with an on-Chip Silicon Microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

Grosjean, T.

Gu, J.

Y. Liang, F. Zhang, J. Gu, X. G. Huang, and S. Liu, “Integratable quarter-wave plates enable one-way angular momentum conversion,” Sci. Rep. 6(1), 24959 (2016).
[Crossref] [PubMed]

Gu, M.

M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

He, K.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

He, Y.

Y. Ke, Y. Liu, Y. He, J. Zhou, H. Luo, and S. Wen, “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,” Appl. Phys. Lett. 107(4), 041107 (2015).
[Crossref]

Heinz, T. F.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Herfort, J.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Hillenbrand, R.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Huang, B. J.

Y. Liang, H. W. Wu, B. J. Huang, and X. G. Huang, “Light beams with selective angular momentum generated by hybrid plasmonic waveguides,” Nanoscale 6(21), 12360–12365 (2014).
[Crossref] [PubMed]

Huang, J.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Huang, X.

Huang, X. G.

H. R. Zhang, F. C. Zhang, Y. Liang, X. G. Huang, and B. H. Jia, “Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry,” J. Phys. D Appl. Phys. 50(16), 165104 (2017).
[Crossref]

Y. Liang, F. Zhang, J. Gu, X. G. Huang, and S. Liu, “Integratable quarter-wave plates enable one-way angular momentum conversion,” Sci. Rep. 6(1), 24959 (2016).
[Crossref] [PubMed]

Y. Liang, H. W. Wu, B. J. Huang, and X. G. Huang, “Light beams with selective angular momentum generated by hybrid plasmonic waveguides,” Nanoscale 6(21), 12360–12365 (2014).
[Crossref] [PubMed]

Huang, X.-G.

Itoh, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Jeffries, G. D.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Jia, B.

Jia, B. H.

H. R. Zhang, F. C. Zhang, Y. Liang, X. G. Huang, and B. H. Jia, “Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry,” J. Phys. D Appl. Phys. 50(16), 165104 (2017).
[Crossref]

Käll, M.

Y. Fang, R. Verre, L. Shao, P. Nordlander, and M. Käll, “Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators,” Nano Lett. 16(8), 5183–5190 (2016).
[Crossref] [PubMed]

Kang, L.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Karr, J. P.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Kavokin, A. V.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Ke, Y.

Y. Ke, Y. Liu, Y. He, J. Zhou, H. Luo, and S. Wen, “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,” Appl. Phys. Lett. 107(4), 041107 (2015).
[Crossref]

Khanikaev, A. B.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
[Crossref] [PubMed]

Kimel, A. V.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kirilyuk, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kok, P.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

Lan, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Lefier, Y.

Leyder, C.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Liang, H.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Liang, Y.

H. R. Zhang, F. C. Zhang, Y. Liang, X. G. Huang, and B. H. Jia, “Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry,” J. Phys. D Appl. Phys. 50(16), 165104 (2017).
[Crossref]

F. Zhang, Y. Liang, H. Zhang, Y. Zhang, X.-G. Huang, B. Jia, and S. Liu, “Optical gears in a nanophotonic directional coupler,” Opt. Express 25(10), 10972–10983 (2017).
[Crossref] [PubMed]

Y. Liang, F. Zhang, J. Gu, X. G. Huang, and S. Liu, “Integratable quarter-wave plates enable one-way angular momentum conversion,” Sci. Rep. 6(1), 24959 (2016).
[Crossref] [PubMed]

Y. Liang and X. Huang, “Generation of two beams of light carrying spin and orbital angular momenta of opposite handedness,” Opt. Lett. 39(17), 5074–5077 (2014).
[Crossref] [PubMed]

Y. Liang, H. W. Wu, B. J. Huang, and X. G. Huang, “Light beams with selective angular momentum generated by hybrid plasmonic waveguides,” Nanoscale 6(21), 12360–12365 (2014).
[Crossref] [PubMed]

Liew, T. C. H.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, S.

F. Zhang, Y. Liang, H. Zhang, Y. Zhang, X.-G. Huang, B. Jia, and S. Liu, “Optical gears in a nanophotonic directional coupler,” Opt. Express 25(10), 10972–10983 (2017).
[Crossref] [PubMed]

Y. Liang, F. Zhang, J. Gu, X. G. Huang, and S. Liu, “Integratable quarter-wave plates enable one-way angular momentum conversion,” Sci. Rep. 6(1), 24959 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Ke, Y. Liu, Y. He, J. Zhou, H. Luo, and S. Wen, “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,” Appl. Phys. Lett. 107(4), 041107 (2015).
[Crossref]

Liu, Z.

Z. Liu, Y. Qiu, Q. Yang, and J. Tao, “Ultracompact wavelength and polarization directional coupler based on nanowire waveguides,” J. Mod. Opt. 64(15), 1538–1543 (2017).
[Crossref]

Lu, M. H.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Luo, H.

Y. Ke, Y. Liu, Y. He, J. Zhou, H. Luo, and S. Wen, “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,” Appl. Phys. Lett. 107(4), 041107 (2015).
[Crossref]

Luo, Y.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Makhonin, M. N.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

Malpuech, G.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Martínez, A.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving Light Handedness with an on-Chip Silicon Microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

McGloin, D.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Mitsch, R.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Neuman, T.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Nguyen, K. N.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Nordlander, P.

Y. Fang, R. Verre, L. Shao, P. Nordlander, and M. Käll, “Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators,” Nano Lett. 16(8), 5183–5190 (2016).
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Petersen, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Price, D. M.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

Puerto, D.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving Light Handedness with an on-Chip Silicon Microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

Qiu, C.-W.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Qiu, Y.

Z. Liu, Y. Qiu, Q. Yang, and J. Tao, “Ultracompact wavelength and polarization directional coupler based on nanowire waveguides,” J. Mod. Opt. 64(15), 1538–1543 (2017).
[Crossref]

Ramsteiner, M.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Rasing, T.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Rauschenbeutel, A.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rodrigues, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving Light Handedness with an on-Chip Silicon Microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

Romanelli, M.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Rousso, D.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Royall, B.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

Ruan, S.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Saba, M.

M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Salas-Montiel, R.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Sanvitto, D.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Sarriugarte, P.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Sayrin, C.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

Scherer, A.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Schneeweiss, P.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Schroder-Turk, G. E.

M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Shan, J.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Shao, L.

Y. Fang, R. Verre, L. Shao, P. Nordlander, and M. Käll, “Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators,” Nano Lett. 16(8), 5183–5190 (2016).
[Crossref] [PubMed]

Shvets, G.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Skolnick, M. S.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

Smirnova, D.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Tahraoui, A.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Tao, J.

Z. Liu, Y. Qiu, Q. Yang, and J. Tao, “Ultracompact wavelength and polarization directional coupler based on nanowire waveguides,” J. Mod. Opt. 64(15), 1538–1543 (2017).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Tsukamoto, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Turner, M. D.

M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Verre, R.

Y. Fang, R. Verre, L. Shao, P. Nordlander, and M. Käll, “Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators,” Nano Lett. 16(8), 5183–5190 (2016).
[Crossref] [PubMed]

Volz, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wen, S.

Y. Ke, Y. Liu, Y. He, J. Zhou, H. Luo, and S. Wen, “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,” Appl. Phys. Lett. 107(4), 041107 (2015).
[Crossref]

Wu, H.

Wu, H. W.

Y. Liang, H. W. Wu, B. J. Huang, and X. G. Huang, “Light beams with selective angular momentum generated by hybrid plasmonic waveguides,” Nanoscale 6(21), 12360–12365 (2014).
[Crossref] [PubMed]

Xu, Y. L.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Yang, Q.

Z. Liu, Y. Qiu, Q. Yang, and J. Tao, “Ultracompact wavelength and polarization directional coupler based on nanowire waveguides,” J. Mod. Opt. 64(15), 1538–1543 (2017).
[Crossref]

Yang, Y.

Y. Yang, R. C. da Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X. C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Zhang, F.

F. Zhang, Y. Liang, H. Zhang, Y. Zhang, X.-G. Huang, B. Jia, and S. Liu, “Optical gears in a nanophotonic directional coupler,” Opt. Express 25(10), 10972–10983 (2017).
[Crossref] [PubMed]

Y. Liang, F. Zhang, J. Gu, X. G. Huang, and S. Liu, “Integratable quarter-wave plates enable one-way angular momentum conversion,” Sci. Rep. 6(1), 24959 (2016).
[Crossref] [PubMed]

Zhang, F. C.

H. R. Zhang, F. C. Zhang, Y. Liang, X. G. Huang, and B. H. Jia, “Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry,” J. Phys. D Appl. Phys. 50(16), 165104 (2017).
[Crossref]

Zhang, H.

Zhang, H. R.

H. R. Zhang, F. C. Zhang, Y. Liang, X. G. Huang, and B. H. Jia, “Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry,” J. Phys. D Appl. Phys. 50(16), 165104 (2017).
[Crossref]

Zhang, L.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Zhang, Q. M.

M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Zhang, S.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, Y.

Zhao, Y.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Zhou, J.

Y. Ke, Y. Liu, Y. He, J. Zhou, H. Luo, and S. Wen, “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,” Appl. Phys. Lett. 107(4), 041107 (2015).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving Light Handedness with an on-Chip Silicon Microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

Appl. Phys. Lett. (2)

Y. Ke, Y. Liu, Y. He, J. Zhou, H. Luo, and S. Wen, “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,” Appl. Phys. Lett. 107(4), 041107 (2015).
[Crossref]

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

J. Mod. Opt. (1)

Z. Liu, Y. Qiu, Q. Yang, and J. Tao, “Ultracompact wavelength and polarization directional coupler based on nanowire waveguides,” J. Mod. Opt. 64(15), 1538–1543 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. R. Zhang, F. C. Zhang, Y. Liang, X. G. Huang, and B. H. Jia, “Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry,” J. Phys. D Appl. Phys. 50(16), 165104 (2017).
[Crossref]

Nano Lett. (5)

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Y. Fang, R. Verre, L. Shao, P. Nordlander, and M. Käll, “Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators,” Nano Lett. 16(8), 5183–5190 (2016).
[Crossref] [PubMed]

Nanoscale (1)

Y. Liang, H. W. Wu, B. J. Huang, and X. G. Huang, “Light beams with selective angular momentum generated by hybrid plasmonic waveguides,” Nanoscale 6(21), 12360–12365 (2014).
[Crossref] [PubMed]

Nat. Commun. (5)

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref] [PubMed]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Nat. Photonics (4)

M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Y. Yang, R. C. da Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Nat. Phys. (1)

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3(9), 628–631 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. (1)

R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Phys. Rev. Lett. (3)

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Liang, F. Zhang, J. Gu, X. G. Huang, and S. Liu, “Integratable quarter-wave plates enable one-way angular momentum conversion,” Sci. Rep. 6(1), 24959 (2016).
[Crossref] [PubMed]

Science (7)

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 3D schematics (not to scale) of the proposed CDBS and the coordinate system used. A quasi-RCP mode (the electric vector spinning clockwise from the point view of the source) launched at the input port-A is transformed into a horizontal mode (quasi-TE) and output from the left output port-B. Correspondingly, a quasi-LCP mode launched at port-A is converted into a vertical mode (quasi-TM) and output from the other output port-C. The inserted figure describes the top view, cross-sectional view and the parameter details, and the black circles denote the centers of these corresponding structures. The proposed device is surrounded by silica (SiO2), which is not shown for simplicity.
Fig. 2
Fig. 2 (a) The schematic of the modes conversion: from port D to E, quasi-CPL modes are converted into quasi linearly polarized light (quasi-LPL) modes correspondingly (a σR mode to a quasi-TE mode and a σL mode to a quasi-TM mode). On the contrary, from E to D, quasi linearly polarized light (quasi-LPL) modes are converted into quasi-CPL modes due to the reciprocity. The insert picture shows the eigenmodes of the hybrid structure. These white arrow lines represent the polarization states of beams. (b) and (c) The theoretical and FDTD simulated results (power and relative phase) of the σR or σL mode transmitting in the hybrid plasmonic HP-PR (QWP) structure, respectively.
Fig. 3
Fig. 3 The dependence of effective index on the width of two waveguides of the PBS structure. The height (h) of each waveguide is 0.34 μm. nHP_TM and nHP_TE denote the real parts of effective indices for the quasi-TE and -TM mode of the hybrid plasmonic waveguide (HP-WG). Similarly, nSi_TM and nSi_TE are the real parts of the effective indices of the silicon waveguide (Si-WG) corresponding modes.
Fig. 4
Fig. 4 (a) The theoretical coupling lengths of the quaisi-TE and -TM modes and the coupling length ratio between them. The coupling length ratio equals to 0.5 which means the coupling length of quasi-TM mode is as twice as the one of quasi-TE mode (Lc_TM = 2Lc_TE = 3.81μm). (b) The structure configuration of the coupler and the simulated field distributions (|Ex| and |Ey|) of quaisi-TM and -TE modes. The red dotted lines represent that the coupling length of quasi-TM mode is two times as the one of quasi-TE mode (Lc_TM = 2Lc_TE = 3.77μm), which is in good agreement with the theoretical value.
Fig. 5
Fig. 5 (a) The transmittances of σR and σL modes vary with the coupling region length (L2). L 2 = 2.3μm is the optimum length of coupling region (Fig. 1). TL_TE and TR_TM are the normalized transmittance on the left or right branch of the CDBS. (b) The corresponding field distributions [Re(Ex) and Re(Ey)] for σR and σL modes input respectively. The σR is converted into a quasi-TE mode (Ex) which propagates in the left Si-WG and outputs from port-B. In contrast, the σL is transformed into a quasi-TM mode (Ey) which is coupled into the right HP-WG and outputs from port-C.
Fig. 6
Fig. 6 The transmittance spectrums of σR and σL input modes, which denotes that the proposed CDBS has a broadband operation capability from 1.45μm to 1.65μm for |CR|>3dB.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ P T E = | - i sin ( κ z + Δ ϕ 0 2 ) | 2 exp ( 2 n ¯ k 0 z ) P T M = | cos ( κ z + Δ ϕ 0 2 ) | 2 exp ( 2 n ¯ k 0 z ) ,
L C = π [ Re ( n π / 4 ) Re ( n π / 4 ) ] k 0 ,
Δ ϕ ( z ) = ϕ T M ( z ) ϕ T E ( z ) ,
L c _ T E / T M = π [ Re ( n T E / T M _ e v e n ) Re ( n T E / T M _ o d d ) ] k 0 .
CR = 10 l g ( T L _ T E / T R _ T M ) ,

Metrics