Abstract

We tailor the spectral characteristics of silicon photonic contradirectional couplers (Contra-DCs), where the design of the coupler is based on placing a subwavelength grating (SWG) waveguide next to a strip waveguide. By tapering the gap distance between the SWG and strip waveguides, we demonstrate a compromise between sidelobe suppression and pass-band/stop-band extinction ratio such that the performance of the device as a potential optical (de)multiplexer is improved. The designs with different pass-band bandwidths of 12 nm, 9 nm, and 6 nm show 10 dB to 20 dB sidelobe suppression ratio and 15 dB to 35 dB extinction ratio. We also obtain a resonant transmission peak in the stop-band of the spectral response of the device by introducing a π phase shift into the gratings of the SWG waveguide. The resonant peak has 1 nm bandwidth and 7 dB extinction ratio, where the use of the SWG waveguide in the structure of such coupler allows the characteristics of the resonant peak to be highly sensitive to the cladding material, which is of strong desire in integrated sensing applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length

Boyu Liu, Yong Zhang, Yu He, Xinhong Jiang, Jizong Peng, Ciyuan Qiu, and Yikai Su
Opt. Express 25(10) 11359-11364 (2017)

Silicon photonic contradirectional couplers using subwavelength grating waveguides

Behnam Naghdi and Lawrence R. Chen
Opt. Express 24(20) 23429-23438 (2016)

Subwavelength-grating contradirectional couplers for large stopband filters

Dominique Charron, Jonathan St-Yves, Omid Jafari, Sophie LaRochelle, and Wei Shi
Opt. Lett. 43(4) 895-898 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
    [PubMed]
  2. A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40(5), 736–739 (2015).
    [PubMed]
  3. X. Wang, W. Shi, R. Vafaei, N. A. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 5, 290–292 (2011).
  4. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
    [PubMed]
  5. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
    [PubMed]
  6. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
    [PubMed]
  7. W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39(3), 701–703 (2014).
    [PubMed]
  8. K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92, 201111 (2008).
  9. B. Naghdi and L. R. Chen, “Silicon photonic contradirectional couplers using subwavelength grating waveguides,” Opt. Express 24(20), 23429–23438 (2016).
    [PubMed]
  10. B. Liu, Y. Zhang, Y. He, X. Jiang, J. Peng, C. Qiu, and Y. Su, “Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length,” Opt. Express 25(10), 11359–11364 (2017).
    [PubMed]
  11. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
  12. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [PubMed]
  13. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
    [PubMed]
  14. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
  15. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
  16. Lumearical Solutions Inc, white paper, “Mode source - Broadband,” https://kb.lumerical.com/prior_en/en/index.html?ref_sim_obj_mode_source_-_broadband.html .
  17. W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper CTu3F.5.
  18. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26(16), 3474–3478 (1987).
    [PubMed]
  19. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Electrically tunable resonant filters in phase-shifted contra-directional couplers,” in IEEE 9th International Conference on Group IV Photonics (IEEE, 2012), paper WP2.
  20. J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
    [PubMed]
  21. S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. F. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
    [PubMed]
  22. J. W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22(3), 2807–2820 (2014).
    [PubMed]

2017 (1)

2016 (2)

2015 (1)

2014 (4)

2013 (2)

2011 (3)

X. Wang, W. Shi, R. Vafaei, N. A. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 5, 290–292 (2011).

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).

2010 (1)

2009 (1)

2008 (1)

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92, 201111 (2008).

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).

1994 (1)

1987 (1)

Aers, G. C.

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).

Baehr-Jones, T.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).

Bienstman, P.

Bock, P. J.

Bojko, R.

Bojko, R. J.

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. F. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).

Bowers, J. E.

Cheben, P.

Chen, L. R.

Cheung, K. C.

Chrostowski, L.

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[PubMed]

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. F. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[PubMed]

X. Wang, W. Shi, R. Vafaei, N. A. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 5, 290–292 (2011).

Claes, T.

de Sterke, C. M.

Delâge, A.

Densmore, A.

Donzella, V.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).

Fainman, Y.

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92, 201111 (2008).

Fard, S. T.

Flueckiger, J.

Greenberg, M.

Grist, S. M.

Hall, T. J.

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).

He, Y.

Hochberg, M.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).

Hoste, J. W.

Ikeda, K.

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92, 201111 (2008).

Jaeger, N. A.

Jaeger, N. A. F.

Janz, S.

Jiang, X.

Jing, Z.

Kromer, H.

Kwok, E.

Lapointe, J.

LaRochelle, S.

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).

Lin, C.

Liu, B.

Liu, Y.

Meriggi, L.

Mizumoto, T.

Murukeshan, V. M.

Naghdi, B.

Nezhad, M.

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92, 201111 (2008).

Patel, D.

Peng, J.

Pintus, P.

Plant, D. V.

Poladian, L.

Prabhathan, P.

Qiu, C.

Ramana, P. V.

Ratner, D. M.

Sakuda, K.

Schmid, J. H.

Schmidt, S.

Schmidt, S. A.

Sherwali, A.

Shi, W.

Simard, A. D.

Sipe, J. E.

Sorel, M.

Strain, M. J.

Su, Y.

Talebi Fard, P.

Tien, M.-C.

Vafaei, R.

X. Wang, W. Shi, R. Vafaei, N. A. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 5, 290–292 (2011).

Veerasubramanian, V.

Wang, X.

Wang, Y.

Werquin, S.

Wu, Y.

Xu, D.-X.

Yamada, M.

Yun, H.

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92, 201111 (2008).

IEEE Photonics Technol. Lett. (1)

X. Wang, W. Shi, R. Vafaei, N. A. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 5, 290–292 (2011).

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).

J. Opt. Soc. Am. A (1)

J. Vacuum Sci. Technol. B (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).

Opt. Express (11)

P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
[PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[PubMed]

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[PubMed]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[PubMed]

B. Naghdi and L. R. Chen, “Silicon photonic contradirectional couplers using subwavelength grating waveguides,” Opt. Express 24(20), 23429–23438 (2016).
[PubMed]

B. Liu, Y. Zhang, Y. He, X. Jiang, J. Peng, C. Qiu, and Y. Su, “Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length,” Opt. Express 25(10), 11359–11364 (2017).
[PubMed]

J. W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22(3), 2807–2820 (2014).
[PubMed]

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. F. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[PubMed]

Opt. Lett. (2)

Other (3)

Lumearical Solutions Inc, white paper, “Mode source - Broadband,” https://kb.lumerical.com/prior_en/en/index.html?ref_sim_obj_mode_source_-_broadband.html .

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper CTu3F.5.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Electrically tunable resonant filters in phase-shifted contra-directional couplers,” in IEEE 9th International Conference on Group IV Photonics (IEEE, 2012), paper WP2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic top view of the apodized and (b) phase-shifted SWG Contra-DC in SOI platform.
Fig. 2
Fig. 2 (a) schematic top view of the SWG taper; (b) cross-section of the strip waveguide.
Fig. 3
Fig. 3 (a) Measured drop-port (red) and through-port (blue) spectra for a device with LC = 100 μm and a fixed gap of G = 150; (b) simulated responses of two gap-tapered devices having Gmin = 150 and Gmax = 450 nm with (dotted) and without (solid) width compensation.
Fig. 4
Fig. 4 Measured drop-port and through-port spectra for (a) devices with Gmin = 150 nm, and Gmax = 450 nm but with different LC of 100 μm (solid lines) and 200 μm (dotted lines), and (b) devices with LC = 100 μm, Gmin = 200 nm, Gmax = 450 nm (solid lines) and LC = 400 μm, Gmin = 250 nm, Gmax = 650 nm (dotted lines).
Fig. 5
Fig. 5 Measured drop-port and through-port spectra for devices with (a) LC = 100 μm, G = 200 nm with (solid lines) and without (dotted lines) a π phase shift, (b) and π phase-shifted devices with LC = 100 μm but different gaps of G = 225 nm (solid lines) and G = 125 nm (dotted lines).
Fig. 6
Fig. 6 Graphical solution of the phase-matched coupling condition given by Eq. (2) as the cross points of β1 + β2 curves by the horizontal dotted line indicating the wavenumber of the grating 2π/Λ. The four cross points correspond to two cladding materials with refractive indices of 1.444 (solid lines) and 1.494 (dashed lines) and two gap distances of 200 nm (blue) and 225 nm (red).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G(z)= G max 1 2 ( G max G min )[ 1cos( 2πz L C ) ];0z L C
β 1 ( λ C )+ β 2 ( λ C )= 2π/Λ
ε avg =η ε Si +( 1η ) ε clad n eq 2 =η n Si 2 +( 1η ) n clad 2
S b = Δ λ res Δ n clad

Metrics