Abstract

We demonstrate a femtosecond two-photon laser-induced fluorescence (fs-TPLIF) technique for sensitive CO detection, using a 230 nm pulse of 9 µJ and 45 fs. The advantages of fs-TPLIF in excitation of molecular species were analyzed. Spectra of CO fs-TPLIF were recorded in stable laminar flames spatially resolved across the flame front. A hot band (1, n) together with the conventional band (0, n) of the B→A transitions were observed in the burned zone and attributed to the broadband nature of the fs excitation. The CO fs-TPLIF signal recorded across the focal point of the excitation beam shows a relatively flat intensity distribution despite of the steep laser intensity variation, which is beneficial for CO imaging in contrast to nanosecond and picosecond TPLIF. This phenomenon can be explained by photoionization, which over the short pulse duration dominates the population depletion of the excited B state due to the high peak power, but only contributes in total a negligible X state depletion due to the low pulse energy. Single-shot CO fs-TPLIF images in methane/air flames were recorded by imaging the broadband fluorescence. The results indicate that fs-TPLIF is a promising tool for CO imaging in flames.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond, two-photon, laser-induced fluorescence (TP-LIF) measurement of CO in high-pressure flames

K. Arafat Rahman, Karna S. Patel, Mikhail N. Slipchenko, Terrence R. Meyer, Zhili Zhang, Yue Wu, James R. Gord, and Sukesh Roy
Appl. Opt. 57(20) 5666-5671 (2018)

Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames

Jonathan H. Frank, Xiangling Chen, Brian D. Patterson, and Thomas B. Settersten
Appl. Opt. 43(12) 2588-2597 (2004)

References

  • View by:
  • |
  • |
  • |

  1. B. B. Dally, A. R. Masri, R. S. Barlow, and G. J. Fiechtner, “2-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames,” Combust. Flame 132, 272 (2003).
  2. K. Smyth and D. R. Crosley, “Detection fo minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J. Jeffries, eds. (Taylor & Francis, 2002), p. 9.
  3. M. Richter, Z. S. Li, and M. Aldén, “Application of two-photon laser-induced fluorescence for single-shot visualization of carbon monoxide in a spark ignited engine,” Appl. Spectrosc. 61(1), 1–5 (2007).
    [PubMed]
  4. O. Carrivain, M. Orain, N. Dorval, C. Morin, and G. Legros, “Experimental spectroscopic studies of carbon monoxide (CO) fluorescence at high temperatures and pressures,” Appl. Spectrosc. 71(10), 2353–2366 (2017).
  5. C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Alden, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34, 3541–3548 (2013).
  6. A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem A. 104, 5660–5694 (2000).
    [PubMed]
  7. A. Bohlin, M. Mann, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions,” Proc. Combust. Inst. 35, 3723–3730 (2015).
  8. C. N. Dennis, C. D. Slabaugh, I. G. Boxx, W. Meier, and R. P. Lucht, “Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor,” Proc. Combust. Inst. 35, 3731–3738 (2015).
  9. S. P. Kearney, “Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames,” Combust. Flame 162, 1748–1758 (2015).
  10. T. Hornung, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses,” J. Raman Spectrosc. 35, 934–938 (2004).
  11. W. D. Kulatilaka, J. R. Gord, V. R. Katta, and S. Roy, “Photolytic-interference-free, femtosecond two-photon fluorescence imaging of atomic hydrogen,” Opt. Lett. 37(15), 3051–3053 (2012).
    [PubMed]
  12. C. A. Hall, W. D. Kulatilaka, J. R. Gord, and R. W. Pitz, “Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames,” Combust. Flame 161, 2924–2932 (2014).
  13. W. D. Kulatilaka, J. R. Gord, and S. Roy, “Femtosecond two-photon LIF imaging of atomic species using a frequency-quadrupled Ti:sapphire laser,” Appl. Phys. B-Lasers Opt. 116, 7–13 (2014).
  14. B. Li, D. Y. Zhang, X. F. Li, Q. Gao, M. F. Yao, and Z. S. Li, “Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence,” Int. J. Hydrogen Energy 42, 3876–3880 (2017).
  15. H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation,” Opt. Lett. 36(10), 1776–1778 (2011).
    [PubMed]
  16. B. S. Jacob, L. S. Brian, D. K. Waruna, R. Sukesh, S. James, and R. G. James, “Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol. 24, 032004 (2015).
  17. D. R. Richardson, S. Roy, and J. R. Gord, “Femtosecond, two-photon, planar laser-induced fluorescence of carbon monoxide in flames,” Opt. Lett. 42(4), 875–878 (2017).
    [PubMed]
  18. M. D. Di Rosa and R. L. Farrow, “Two-photon excitation cross section of the B <- X(0,0) band of CO measured by direct absorption,” J. Opt. Soc. Am. B 16, 1988–1994 (1999).
  19. B. R. Marx, J. Simons, and L. Allen, “Effect of laser linewidth on 2-photon absorption rates,” J. Phys. B-Atom. Molec. Opt. Phys. 11, L273–L277 (1978).
  20. D. A. Everest, C. R. Shaddix, and K. C. Smyth, “Quantitative two-photon laser-induced fluorescence imaging of CO in flickering CH4/air diffusion flames,” in Twenty-Sixth Symposium (International) on Combustion, Vols 1 and 2 (1996), pp. 1161–1169.
  21. P. J. H. Tjossem and K. C. Smyth, “Multiphoton Excitation Spectroscopy of the B1sigma+ and C1sigma+ Rydberg States of Co,” J. Chem. Phys. 91, 2041–2048 (1989).
  22. F. Kong, Q. Luo, H. Xu, M. Sharifi, D. Song, and S. L. Chin, “Explosive photodissociation of methane induced by ultrafast intense laser,” J. Chem. Phys. 125(13), 133320 (2006).
    [PubMed]
  23. H. L. Xu, A. Azarm, and S. L. Chin, “Controlling fluorescence from N-2 inside femtosecond laser filaments in air by two-color laser pulses,” Appl. Phys. Lett. 98, 141111 (2011).
  24. A. P. Nefedov, V. A. Sinel’shchikov, A. D. Usachev, and A. V. Zobnin, “Photochemical effect in two-photon laser-induced fluorescence detection of carbon monoxide in hydrocarbon flames,” Appl. Opt. 37(33), 7729–7736 (1998).
    [PubMed]

2017 (3)

2015 (4)

B. S. Jacob, L. S. Brian, D. K. Waruna, R. Sukesh, S. James, and R. G. James, “Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol. 24, 032004 (2015).

A. Bohlin, M. Mann, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions,” Proc. Combust. Inst. 35, 3723–3730 (2015).

C. N. Dennis, C. D. Slabaugh, I. G. Boxx, W. Meier, and R. P. Lucht, “Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor,” Proc. Combust. Inst. 35, 3731–3738 (2015).

S. P. Kearney, “Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames,” Combust. Flame 162, 1748–1758 (2015).

2014 (2)

C. A. Hall, W. D. Kulatilaka, J. R. Gord, and R. W. Pitz, “Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames,” Combust. Flame 161, 2924–2932 (2014).

W. D. Kulatilaka, J. R. Gord, and S. Roy, “Femtosecond two-photon LIF imaging of atomic species using a frequency-quadrupled Ti:sapphire laser,” Appl. Phys. B-Lasers Opt. 116, 7–13 (2014).

2013 (1)

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Alden, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34, 3541–3548 (2013).

2012 (1)

2011 (2)

H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation,” Opt. Lett. 36(10), 1776–1778 (2011).
[PubMed]

H. L. Xu, A. Azarm, and S. L. Chin, “Controlling fluorescence from N-2 inside femtosecond laser filaments in air by two-color laser pulses,” Appl. Phys. Lett. 98, 141111 (2011).

2007 (1)

2006 (1)

F. Kong, Q. Luo, H. Xu, M. Sharifi, D. Song, and S. L. Chin, “Explosive photodissociation of methane induced by ultrafast intense laser,” J. Chem. Phys. 125(13), 133320 (2006).
[PubMed]

2004 (1)

T. Hornung, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses,” J. Raman Spectrosc. 35, 934–938 (2004).

2003 (1)

B. B. Dally, A. R. Masri, R. S. Barlow, and G. J. Fiechtner, “2-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames,” Combust. Flame 132, 272 (2003).

2000 (1)

A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem A. 104, 5660–5694 (2000).
[PubMed]

1999 (1)

1998 (1)

1989 (1)

P. J. H. Tjossem and K. C. Smyth, “Multiphoton Excitation Spectroscopy of the B1sigma+ and C1sigma+ Rydberg States of Co,” J. Chem. Phys. 91, 2041–2048 (1989).

1978 (1)

B. R. Marx, J. Simons, and L. Allen, “Effect of laser linewidth on 2-photon absorption rates,” J. Phys. B-Atom. Molec. Opt. Phys. 11, L273–L277 (1978).

Alden, M.

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Alden, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34, 3541–3548 (2013).

Aldén, M.

Allen, L.

B. R. Marx, J. Simons, and L. Allen, “Effect of laser linewidth on 2-photon absorption rates,” J. Phys. B-Atom. Molec. Opt. Phys. 11, L273–L277 (1978).

Azarm, A.

H. L. Xu, A. Azarm, and S. L. Chin, “Controlling fluorescence from N-2 inside femtosecond laser filaments in air by two-color laser pulses,” Appl. Phys. Lett. 98, 141111 (2011).

Barlow, R. S.

B. B. Dally, A. R. Masri, R. S. Barlow, and G. J. Fiechtner, “2-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames,” Combust. Flame 132, 272 (2003).

Bohlin, A.

A. Bohlin, M. Mann, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions,” Proc. Combust. Inst. 35, 3723–3730 (2015).

Bood, J.

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Alden, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34, 3541–3548 (2013).

Boxx, I. G.

C. N. Dennis, C. D. Slabaugh, I. G. Boxx, W. Meier, and R. P. Lucht, “Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor,” Proc. Combust. Inst. 35, 3731–3738 (2015).

Brackmann, C.

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Alden, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34, 3541–3548 (2013).

Brian, L. S.

B. S. Jacob, L. S. Brian, D. K. Waruna, R. Sukesh, S. James, and R. G. James, “Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol. 24, 032004 (2015).

Carrivain, O.

Chin, S. L.

H. L. Xu, A. Azarm, and S. L. Chin, “Controlling fluorescence from N-2 inside femtosecond laser filaments in air by two-color laser pulses,” Appl. Phys. Lett. 98, 141111 (2011).

F. Kong, Q. Luo, H. Xu, M. Sharifi, D. Song, and S. L. Chin, “Explosive photodissociation of methane induced by ultrafast intense laser,” J. Chem. Phys. 125(13), 133320 (2006).
[PubMed]

Dally, B. B.

B. B. Dally, A. R. Masri, R. S. Barlow, and G. J. Fiechtner, “2-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames,” Combust. Flame 132, 272 (2003).

Dennis, C. N.

C. N. Dennis, C. D. Slabaugh, I. G. Boxx, W. Meier, and R. P. Lucht, “Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor,” Proc. Combust. Inst. 35, 3731–3738 (2015).

Di Rosa, M. D.

Dorval, N.

Dreizler, A.

A. Bohlin, M. Mann, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions,” Proc. Combust. Inst. 35, 3723–3730 (2015).

Farrow, R. L.

Fiechtner, G. J.

B. B. Dally, A. R. Masri, R. S. Barlow, and G. J. Fiechtner, “2-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames,” Combust. Flame 132, 272 (2003).

Gao, Q.

B. Li, D. Y. Zhang, X. F. Li, Q. Gao, M. F. Yao, and Z. S. Li, “Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence,” Int. J. Hydrogen Energy 42, 3876–3880 (2017).

Gord, J. R.

Hall, C. A.

C. A. Hall, W. D. Kulatilaka, J. R. Gord, and R. W. Pitz, “Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames,” Combust. Flame 161, 2924–2932 (2014).

Hornung, T.

T. Hornung, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses,” J. Raman Spectrosc. 35, 934–938 (2004).

Jacob, B. S.

B. S. Jacob, L. S. Brian, D. K. Waruna, R. Sukesh, S. James, and R. G. James, “Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol. 24, 032004 (2015).

James, R. G.

B. S. Jacob, L. S. Brian, D. K. Waruna, R. Sukesh, S. James, and R. G. James, “Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol. 24, 032004 (2015).

James, S.

B. S. Jacob, L. S. Brian, D. K. Waruna, R. Sukesh, S. James, and R. G. James, “Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol. 24, 032004 (2015).

Katta, V. R.

Kearney, S. P.

S. P. Kearney, “Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames,” Combust. Flame 162, 1748–1758 (2015).

Kliewer, C. J.

A. Bohlin, M. Mann, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions,” Proc. Combust. Inst. 35, 3723–3730 (2015).

Kompa, K. L.

T. Hornung, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses,” J. Raman Spectrosc. 35, 934–938 (2004).

Kong, F.

F. Kong, Q. Luo, H. Xu, M. Sharifi, D. Song, and S. L. Chin, “Explosive photodissociation of methane induced by ultrafast intense laser,” J. Chem. Phys. 125(13), 133320 (2006).
[PubMed]

Kulatilaka, W. D.

C. A. Hall, W. D. Kulatilaka, J. R. Gord, and R. W. Pitz, “Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames,” Combust. Flame 161, 2924–2932 (2014).

W. D. Kulatilaka, J. R. Gord, and S. Roy, “Femtosecond two-photon LIF imaging of atomic species using a frequency-quadrupled Ti:sapphire laser,” Appl. Phys. B-Lasers Opt. 116, 7–13 (2014).

W. D. Kulatilaka, J. R. Gord, V. R. Katta, and S. Roy, “Photolytic-interference-free, femtosecond two-photon fluorescence imaging of atomic hydrogen,” Opt. Lett. 37(15), 3051–3053 (2012).
[PubMed]

H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation,” Opt. Lett. 36(10), 1776–1778 (2011).
[PubMed]

Legros, G.

Li, B.

B. Li, D. Y. Zhang, X. F. Li, Q. Gao, M. F. Yao, and Z. S. Li, “Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence,” Int. J. Hydrogen Energy 42, 3876–3880 (2017).

Li, X. F.

B. Li, D. Y. Zhang, X. F. Li, Q. Gao, M. F. Yao, and Z. S. Li, “Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence,” Int. J. Hydrogen Energy 42, 3876–3880 (2017).

Li, Z. S.

B. Li, D. Y. Zhang, X. F. Li, Q. Gao, M. F. Yao, and Z. S. Li, “Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence,” Int. J. Hydrogen Energy 42, 3876–3880 (2017).

M. Richter, Z. S. Li, and M. Aldén, “Application of two-photon laser-induced fluorescence for single-shot visualization of carbon monoxide in a spark ignited engine,” Appl. Spectrosc. 61(1), 1–5 (2007).
[PubMed]

Lucht, R. P.

C. N. Dennis, C. D. Slabaugh, I. G. Boxx, W. Meier, and R. P. Lucht, “Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor,” Proc. Combust. Inst. 35, 3731–3738 (2015).

Luo, Q.

F. Kong, Q. Luo, H. Xu, M. Sharifi, D. Song, and S. L. Chin, “Explosive photodissociation of methane induced by ultrafast intense laser,” J. Chem. Phys. 125(13), 133320 (2006).
[PubMed]

Mann, M.

A. Bohlin, M. Mann, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions,” Proc. Combust. Inst. 35, 3723–3730 (2015).

Marx, B. R.

B. R. Marx, J. Simons, and L. Allen, “Effect of laser linewidth on 2-photon absorption rates,” J. Phys. B-Atom. Molec. Opt. Phys. 11, L273–L277 (1978).

Masri, A. R.

B. B. Dally, A. R. Masri, R. S. Barlow, and G. J. Fiechtner, “2-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames,” Combust. Flame 132, 272 (2003).

Meier, W.

C. N. Dennis, C. D. Slabaugh, I. G. Boxx, W. Meier, and R. P. Lucht, “Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor,” Proc. Combust. Inst. 35, 3731–3738 (2015).

Morin, C.

Motzkus, M.

T. Hornung, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses,” J. Raman Spectrosc. 35, 934–938 (2004).

Nefedov, A. P.

Orain, M.

Patterson, B. D.

A. Bohlin, M. Mann, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions,” Proc. Combust. Inst. 35, 3723–3730 (2015).

Pitz, R. W.

C. A. Hall, W. D. Kulatilaka, J. R. Gord, and R. W. Pitz, “Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames,” Combust. Flame 161, 2924–2932 (2014).

Richardson, D. R.

Richter, M.

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Alden, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34, 3541–3548 (2013).

M. Richter, Z. S. Li, and M. Aldén, “Application of two-photon laser-induced fluorescence for single-shot visualization of carbon monoxide in a spark ignited engine,” Appl. Spectrosc. 61(1), 1–5 (2007).
[PubMed]

Rosell, J.

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Alden, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34, 3541–3548 (2013).

Roy, S.

Sharifi, M.

F. Kong, Q. Luo, H. Xu, M. Sharifi, D. Song, and S. L. Chin, “Explosive photodissociation of methane induced by ultrafast intense laser,” J. Chem. Phys. 125(13), 133320 (2006).
[PubMed]

Simons, J.

B. R. Marx, J. Simons, and L. Allen, “Effect of laser linewidth on 2-photon absorption rates,” J. Phys. B-Atom. Molec. Opt. Phys. 11, L273–L277 (1978).

Sinel’shchikov, V. A.

Sjoholm, J.

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Alden, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34, 3541–3548 (2013).

Skenderovic, H.

T. Hornung, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses,” J. Raman Spectrosc. 35, 934–938 (2004).

Slabaugh, C. D.

C. N. Dennis, C. D. Slabaugh, I. G. Boxx, W. Meier, and R. P. Lucht, “Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor,” Proc. Combust. Inst. 35, 3731–3738 (2015).

Smyth, K. C.

P. J. H. Tjossem and K. C. Smyth, “Multiphoton Excitation Spectroscopy of the B1sigma+ and C1sigma+ Rydberg States of Co,” J. Chem. Phys. 91, 2041–2048 (1989).

Song, D.

F. Kong, Q. Luo, H. Xu, M. Sharifi, D. Song, and S. L. Chin, “Explosive photodissociation of methane induced by ultrafast intense laser,” J. Chem. Phys. 125(13), 133320 (2006).
[PubMed]

Stauffer, H. U.

Sukesh, R.

B. S. Jacob, L. S. Brian, D. K. Waruna, R. Sukesh, S. James, and R. G. James, “Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol. 24, 032004 (2015).

Tjossem, P. J. H.

P. J. H. Tjossem and K. C. Smyth, “Multiphoton Excitation Spectroscopy of the B1sigma+ and C1sigma+ Rydberg States of Co,” J. Chem. Phys. 91, 2041–2048 (1989).

Usachev, A. D.

Waruna, D. K.

B. S. Jacob, L. S. Brian, D. K. Waruna, R. Sukesh, S. James, and R. G. James, “Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol. 24, 032004 (2015).

Xu, H.

F. Kong, Q. Luo, H. Xu, M. Sharifi, D. Song, and S. L. Chin, “Explosive photodissociation of methane induced by ultrafast intense laser,” J. Chem. Phys. 125(13), 133320 (2006).
[PubMed]

Xu, H. L.

H. L. Xu, A. Azarm, and S. L. Chin, “Controlling fluorescence from N-2 inside femtosecond laser filaments in air by two-color laser pulses,” Appl. Phys. Lett. 98, 141111 (2011).

Yao, M. F.

B. Li, D. Y. Zhang, X. F. Li, Q. Gao, M. F. Yao, and Z. S. Li, “Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence,” Int. J. Hydrogen Energy 42, 3876–3880 (2017).

Zewail, A. H.

A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem A. 104, 5660–5694 (2000).
[PubMed]

Zhang, D. Y.

B. Li, D. Y. Zhang, X. F. Li, Q. Gao, M. F. Yao, and Z. S. Li, “Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence,” Int. J. Hydrogen Energy 42, 3876–3880 (2017).

Zobnin, A. V.

Appl. Opt. (1)

Appl. Phys. B-Lasers Opt. (1)

W. D. Kulatilaka, J. R. Gord, and S. Roy, “Femtosecond two-photon LIF imaging of atomic species using a frequency-quadrupled Ti:sapphire laser,” Appl. Phys. B-Lasers Opt. 116, 7–13 (2014).

Appl. Phys. Lett. (1)

H. L. Xu, A. Azarm, and S. L. Chin, “Controlling fluorescence from N-2 inside femtosecond laser filaments in air by two-color laser pulses,” Appl. Phys. Lett. 98, 141111 (2011).

Appl. Spectrosc. (2)

Combust. Flame (3)

B. B. Dally, A. R. Masri, R. S. Barlow, and G. J. Fiechtner, “2-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames,” Combust. Flame 132, 272 (2003).

S. P. Kearney, “Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames,” Combust. Flame 162, 1748–1758 (2015).

C. A. Hall, W. D. Kulatilaka, J. R. Gord, and R. W. Pitz, “Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames,” Combust. Flame 161, 2924–2932 (2014).

Int. J. Hydrogen Energy (1)

B. Li, D. Y. Zhang, X. F. Li, Q. Gao, M. F. Yao, and Z. S. Li, “Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence,” Int. J. Hydrogen Energy 42, 3876–3880 (2017).

J. Chem. Phys. (2)

P. J. H. Tjossem and K. C. Smyth, “Multiphoton Excitation Spectroscopy of the B1sigma+ and C1sigma+ Rydberg States of Co,” J. Chem. Phys. 91, 2041–2048 (1989).

F. Kong, Q. Luo, H. Xu, M. Sharifi, D. Song, and S. L. Chin, “Explosive photodissociation of methane induced by ultrafast intense laser,” J. Chem. Phys. 125(13), 133320 (2006).
[PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. B-Atom. Molec. Opt. Phys. (1)

B. R. Marx, J. Simons, and L. Allen, “Effect of laser linewidth on 2-photon absorption rates,” J. Phys. B-Atom. Molec. Opt. Phys. 11, L273–L277 (1978).

J. Phys. Chem A. (1)

A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem A. 104, 5660–5694 (2000).
[PubMed]

J. Raman Spectrosc. (1)

T. Hornung, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses,” J. Raman Spectrosc. 35, 934–938 (2004).

Opt. Lett. (3)

Plasma Sources Sci. Technol. (1)

B. S. Jacob, L. S. Brian, D. K. Waruna, R. Sukesh, S. James, and R. G. James, “Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol. 24, 032004 (2015).

Proc. Combust. Inst. (3)

A. Bohlin, M. Mann, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions,” Proc. Combust. Inst. 35, 3723–3730 (2015).

C. N. Dennis, C. D. Slabaugh, I. G. Boxx, W. Meier, and R. P. Lucht, “Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor,” Proc. Combust. Inst. 35, 3731–3738 (2015).

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Alden, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34, 3541–3548 (2013).

Other (2)

K. Smyth and D. R. Crosley, “Detection fo minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J. Jeffries, eds. (Taylor & Francis, 2002), p. 9.

D. A. Everest, C. R. Shaddix, and K. C. Smyth, “Quantitative two-photon laser-induced fluorescence imaging of CO in flickering CH4/air diffusion flames,” in Twenty-Sixth Symposium (International) on Combustion, Vols 1 and 2 (1996), pp. 1161–1169.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the experimental setup of the femtosecond two-photon LIF (fs-TPLIF) of CO. The inset is a photo of a premixed CH4/air flame with hot co-flow stabilized on a modified McKenna burner.
Fig. 2
Fig. 2 A simplified energy level diagram of CO with indication of related transitions relevant to the fs-TPLIF process.
Fig. 3
Fig. 3 Spectra of CO fs-TPLIF: (a) spatially resolved imaging spectrum recorded in a laminar premixed CH4/air jet flame (Φ = 1.5); (b) integrated spectral curve of the flame; (c) spectral curve of a gas mixture of CO/N2 at room temperature.
Fig. 4
Fig. 4 Femtosecond-TPLIF spectra from on- (black) and off-line (red) of CO excitation in different CH4/air flames: (a-b) premixed flames with Φ = 1.0, and 1.5, respectively; (c-d) partially premixed flames with Φ = 2.0 and 3.0, respectively; (e) diffusion flame. The insets show the flame photos and the green arrows indicate the position of the fs laser.
Fig. 5
Fig. 5 Spatially resolved fs-TPLIF of CO diluted in N2 at room temperature: (a) LIF images; (b) LIF intensity curves; (c) laser energy density of the 5 µJ fs laser pulse, calculated (broken line) based on the optical beam geometry and measured (dots) using a moving blade together with a fit (solid line).
Fig. 6
Fig. 6 Single-shot imaging of CO fs-TPLIF in CH4/air premixed jet flames: upper, Φ = 0.6; lower, Φ = 1.5.

Tables (1)

Tables Icon

Table 1 Conditions of the flames adopted in this work.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S LIF =C N CO σ I 2 A A+Q+P+ σ i I ,
σ( 2 ω c )= σ 0 + δ( ξΩ )ģ( ξ2 ω c )dξ,
ģ( 2 ω c )= + g( ξ )g( 2 ω c ξ )dξ,
g( ω )= 1 c ω 2π e ( ω ω c ) 2 2 c ω 2 .
σ( 2 ω c )= σ 0 ģ( Ω2 ω c ) .
σ( 2 ω c )= σ 0 + g( ξ )g( ξ )dξ= σ 0 1 2 π c ω .
I ( t )= I 0 P(t),
P( t )= 1 c t 2π e ( t c t ) 2 2 c t 2  , 
I 2 = I 0 2 + P 2 ( t )dt= I 0 2 1 2 π c t .
S LIF  ~ σ 0 I 0 2 1 c ω c t .
S LIF I 2 A A+Q+P+ σ i I I 2 A σ i I I.

Metrics