Abstract

The mediated coupling of surface plasmon polaritons (SPPs) by a parallel moving electron beam is demonstrated in this paper. The theoretical analysis shows that the electron beam excited spoof surface plasmon polaritons (SSPs) on the grating placed above the metal films play the role as the excitation source in the mediated coupling. The numerical calculations and particle-in-cell simulations demonstrate the significant advantages of the SSPs mediately coupled SPPs in contrast with that coupled by the parallel moving electron beam directly. The photo density of the mediately coupled SPPs reaches up to 106 per cm2 for the electron beam with the charge density 100 nC/cm, which is two orders of magnitude larger than that of the directly coupled SPPs. The tuning band of the mediately coupled SPPs reaches up to 9% for the beam energy ranging from 10 keV to 30 keV, while it almost cannot be tuned for the direct coupling. The lifetime of the mediately coupled SPPs, which reaches up to hundreds of femtoseconds, is also much longer. Accordingly, the mediated coupling may bring great significances for the applications of SPPs.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electron beam excitation of surface plasmon polaritons

Sen Gong, Min Hu, Renbin Zhong, Xiaoxing Chen, Ping Zhang, Tao Zhao, and Shenggang Liu
Opt. Express 22(16) 19252-19261 (2014)

Surface plasmon polariton beams from an electrically excited plasmonic crystal

Damien Canneson, Eric Le Moal, Shuiyan Cao, Xavier Quélin, Hervé Dallaporta, Gérald Dujardin, and Elizabeth Boer-Duchemin
Opt. Express 24(23) 26186-26200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Berlin Heidelberg, 1988).
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B Chem. 54, 3–15 (1999).
  4. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [PubMed]
  5. S. H. Cao, W. P. Cai, Q. Liu, and Y. Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5, 317–336 (2012).
    [PubMed]
  6. D. W. Pohl, Near-field Optics and the Surface Plasmon Polariton (Springer Berlin Heidelberg, 2001).
  7. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5, S16 (2003).
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [PubMed]
  9. S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
    [PubMed]
  10. S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).
  11. S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).
  12. K. Tantiwanichapan, X. Wang, A. K. Swan, and R. Paiella, “Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation,” Appl. Phys. Lett. 105, 241102 (2014).
  13. T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89, 245434 (2014).
  14. I. Georgescu, “Light from ripples,” Nat. Phys. 8, 704 (2012).
  15. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
  16. A. Otto, “Excitation by light ofω+ andω− surface plasma waves in thin metal layers,” Z. Phys. 219, 227–233 (1969).
  17. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
    [PubMed]
  18. J. P. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88, 121410 (2013).
  19. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [PubMed]
  20. A. E. Miroshnichenko and Y. S. Kivshar, “Applied physics. Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
    [PubMed]
  21. F. J. Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).
  22. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
    [PubMed]
  23. J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38, 36 (1977).
  24. S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
    [PubMed]
  25. F. J. Garcıía de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7(12), 11409–11419 (2013).
    [PubMed]
  26. K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951–956 (2015).
  27. S. Gong, M. Hu, R.Zhong, X. Chen, P. Zhang, T. Zhao and S. Liu, Terahertz Science and Technology, 8 (2015).
  28. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Surfaces with holes in them: new plasmonic metamaterials,” Science 305, 847 (2004).
    [PubMed]
  29. S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3 Pt 2), 036602 (2009).
    [PubMed]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
  31. H. Zhang, J. Zhu, Z. Zhu, Y. Jin, Q. Li, and G. Jin, “Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating,” Opt. Express 21(11), 13492–13501 (2013).
    [PubMed]
  32. H. Miao, A. A. Gomella, N. Chedid, L. Chen, and H. Wen, “Fabrication of 200 nm period hard X-ray phase gratings,” Nano Lett. 14(6), 3453–3458 (2014).
    [PubMed]
  33. J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” arXiv preprint arXiv:1411.6200 (2014).

2015 (2)

S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951–956 (2015).

2014 (5)

H. Miao, A. A. Gomella, N. Chedid, L. Chen, and H. Wen, “Fabrication of 200 nm period hard X-ray phase gratings,” Nano Lett. 14(6), 3453–3458 (2014).
[PubMed]

S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
[PubMed]

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).

K. Tantiwanichapan, X. Wang, A. K. Swan, and R. Paiella, “Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation,” Appl. Phys. Lett. 105, 241102 (2014).

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89, 245434 (2014).

2013 (6)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[PubMed]

J. P. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88, 121410 (2013).

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Applied physics. Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
[PubMed]

F. J. Garcıía de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7(12), 11409–11419 (2013).
[PubMed]

H. Zhang, J. Zhu, Z. Zhu, Y. Jin, Q. Li, and G. Jin, “Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating,” Opt. Express 21(11), 13492–13501 (2013).
[PubMed]

2012 (3)

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[PubMed]

I. Georgescu, “Light from ripples,” Nat. Phys. 8, 704 (2012).

S. H. Cao, W. P. Cai, Q. Liu, and Y. Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5, 317–336 (2012).
[PubMed]

2010 (1)

F. J. Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).

2009 (2)

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[PubMed]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3 Pt 2), 036602 (2009).
[PubMed]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

2004 (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Surfaces with holes in them: new plasmonic metamaterials,” Science 305, 847 (2004).
[PubMed]

2003 (3)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5, S16 (2003).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B Chem. 54, 3–15 (1999).

1977 (1)

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38, 36 (1977).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).

1969 (1)

A. Otto, “Excitation by light ofω+ andω− surface plasma waves in thin metal layers,” Z. Phys. 219, 227–233 (1969).

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).

Abajo, F. J.

F. J. Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).

Ang, L. K.

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951–956 (2015).

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Ballu, Y.

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38, 36 (1977).

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Cai, W. P.

S. H. Cao, W. P. Cai, Q. Liu, and Y. Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5, 317–336 (2012).
[PubMed]

Cao, S. H.

S. H. Cao, W. P. Cai, Q. Liu, and Y. Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5, 317–336 (2012).
[PubMed]

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

J. P. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88, 121410 (2013).

Chedid, N.

H. Miao, A. A. Gomella, N. Chedid, L. Chen, and H. Wen, “Fabrication of 200 nm period hard X-ray phase gratings,” Nano Lett. 14(6), 3453–3458 (2014).
[PubMed]

Chen, C. H.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[PubMed]

Chen, L.

H. Miao, A. A. Gomella, N. Chedid, L. Chen, and H. Wen, “Fabrication of 200 nm period hard X-ray phase gratings,” Nano Lett. 14(6), 3453–3458 (2014).
[PubMed]

Chen, X.

S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).

S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
[PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).

Chu, H. S.

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951–956 (2015).

Chu, M. W.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[PubMed]

Chui, S. T.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89, 245434 (2014).

Deng, J. P.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

García de Abajo, F. J.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Surfaces with holes in them: new plasmonic metamaterials,” Science 305, 847 (2004).
[PubMed]

Garciía de Abajo, F. J.

F. J. Garcıía de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7(12), 11409–11419 (2013).
[PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B Chem. 54, 3–15 (1999).

Georgescu, I.

I. Georgescu, “Light from ripples,” Nat. Phys. 8, 704 (2012).

Ginzburg, P.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[PubMed]

Gomella, A. A.

H. Miao, A. A. Gomella, N. Chedid, L. Chen, and H. Wen, “Fabrication of 200 nm period hard X-ray phase gratings,” Nano Lett. 14(6), 3453–3458 (2014).
[PubMed]

Gong, S.

S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).

S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
[PubMed]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[PubMed]

Han, D.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89, 245434 (2014).

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B Chem. 54, 3–15 (1999).

Hu, M.

S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).

S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
[PubMed]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[PubMed]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3 Pt 2), 036602 (2009).
[PubMed]

Hu, X.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89, 245434 (2014).

Jin, G.

Jin, Y.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).

Kivshar, Y. S.

A. E. Miroshnichenko and Y. S. Kivshar, “Applied physics. Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
[PubMed]

Koh, W. S.

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951–956 (2015).

Lecante, J.

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38, 36 (1977).

Li, Q.

Li, Y.

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3 Pt 2), 036602 (2009).
[PubMed]

Li, Y. Q.

S. H. Cao, W. P. Cai, Q. Liu, and Y. Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5, 317–336 (2012).
[PubMed]

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Liu, Q.

S. H. Cao, W. P. Cai, Q. Liu, and Y. Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5, 317–336 (2012).
[PubMed]

Liu, S.

S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).

S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
[PubMed]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[PubMed]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3 Pt 2), 036602 (2009).
[PubMed]

Liu, W.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[PubMed]

Liu, X.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89, 245434 (2014).

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

Marino, G.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[PubMed]

Martínez, A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[PubMed]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Surfaces with holes in them: new plasmonic metamaterials,” Science 305, 847 (2004).
[PubMed]

Miao, H.

H. Miao, A. A. Gomella, N. Chedid, L. Chen, and H. Wen, “Fabrication of 200 nm period hard X-ray phase gratings,” Nano Lett. 14(6), 3453–3458 (2014).
[PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko and Y. S. Kivshar, “Applied physics. Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
[PubMed]

Mou, C. Y.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[PubMed]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Mueller, J. P. B.

J. P. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88, 121410 (2013).

Myroshnychenko, V.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[PubMed]

Newns, D. M.

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38, 36 (1977).

O’Connor, D.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[PubMed]

Ooi, K. J. A.

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951–956 (2015).

Otto, A.

A. Otto, “Excitation by light ofω+ andω− surface plasma waves in thin metal layers,” Z. Phys. 219, 227–233 (1969).

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).

Paiella, R.

K. Tantiwanichapan, X. Wang, A. K. Swan, and R. Paiella, “Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation,” Appl. Phys. Lett. 105, 241102 (2014).

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Surfaces with holes in them: new plasmonic metamaterials,” Science 305, 847 (2004).
[PubMed]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5, S16 (2003).

Swan, A. K.

K. Tantiwanichapan, X. Wang, A. K. Swan, and R. Paiella, “Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation,” Appl. Phys. Lett. 105, 241102 (2014).

Tan, D. T.

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951–956 (2015).

Tantiwanichapan, K.

K. Tantiwanichapan, X. Wang, A. K. Swan, and R. Paiella, “Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation,” Appl. Phys. Lett. 105, 241102 (2014).

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Wang, X.

K. Tantiwanichapan, X. Wang, A. K. Swan, and R. Paiella, “Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation,” Appl. Phys. Lett. 105, 241102 (2014).

Wen, H.

H. Miao, A. A. Gomella, N. Chedid, L. Chen, and H. Wen, “Fabrication of 200 nm period hard X-ray phase gratings,” Nano Lett. 14(6), 3453–3458 (2014).
[PubMed]

Wurtz, G. A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B Chem. 54, 3–15 (1999).

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Yuan, X. C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Zayats, A. V.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5, S16 (2003).

Zhan, T.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89, 245434 (2014).

Zhang, C.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).

Zhang, H.

Zhang, P.

S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).

S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
[PubMed]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[PubMed]

Zhang, Y.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[PubMed]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3 Pt 2), 036602 (2009).
[PubMed]

Zhao, T.

S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).

S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
[PubMed]

Zhong, R.

S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).

S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
[PubMed]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[PubMed]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3 Pt 2), 036602 (2009).
[PubMed]

Zhu, J.

Zhu, Z.

Zi, J.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89, 245434 (2014).

ACS Nano (1)

F. J. Garcıía de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7(12), 11409–11419 (2013).
[PubMed]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

S. H. Cao, W. P. Cai, Q. Liu, and Y. Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5, 317–336 (2012).
[PubMed]

Appl. Phys. Lett. (2)

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).

K. Tantiwanichapan, X. Wang, A. K. Swan, and R. Paiella, “Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation,” Appl. Phys. Lett. 105, 241102 (2014).

Chin. Phys. B (1)

S. Gong, R. Zhong, M. Hu, X. Chen, P. Zhang, T. Zhao, and S. Liu, “ Coherent and tunable radiation with power enhancement from surface plasmon polaritons,” Chin. Phys. B 24, 077302 (2015).

IEEE Trans. Plasma Sci. (1)

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951–956 (2015).

J. Opt. A, Pure Appl. Opt. (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5, S16 (2003).

Nano Lett. (2)

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[PubMed]

H. Miao, A. A. Gomella, N. Chedid, L. Chen, and H. Wen, “Fabrication of 200 nm period hard X-ray phase gratings,” Nano Lett. 14(6), 3453–3458 (2014).
[PubMed]

Nat. Phys. (1)

I. Georgescu, “Light from ripples,” Nat. Phys. 8, 704 (2012).

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Opt. Express (2)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

Phys. Rev. B (3)

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89, 245434 (2014).

J. P. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88, 121410 (2013).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3 Pt 2), 036602 (2009).
[PubMed]

Phys. Rev. Lett. (2)

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38, 36 (1977).

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[PubMed]

Rev. Mod. Phys. (1)

F. J. Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).

Science (4)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Applied physics. Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
[PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Surfaces with holes in them: new plasmonic metamaterials,” Science 305, 847 (2004).
[PubMed]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B Chem. 54, 3–15 (1999).

Z. Phys. (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).

A. Otto, “Excitation by light ofω+ andω− surface plasma waves in thin metal layers,” Z. Phys. 219, 227–233 (1969).

Other (4)

D. W. Pohl, Near-field Optics and the Surface Plasmon Polariton (Springer Berlin Heidelberg, 2001).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Berlin Heidelberg, 1988).

S. Gong, M. Hu, R.Zhong, X. Chen, P. Zhang, T. Zhao and S. Liu, Terahertz Science and Technology, 8 (2015).

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” arXiv preprint arXiv:1411.6200 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a): The schematic of the SSPs mediated coupling of SPPs; (b): The dispersion curves of the mediated coupling; (c) and (d): The contour maps of the Ez field at working point A (778 THz) in y-z plane and x-y plane, respectively.
Fig. 2
Fig. 2 (a). The spectra of Ez fields of the SSPs mediated and direct coupling, and the inset is that of the mediated coupling for beam energy 130 keV and 150 keV. (b). The Ez fields of the mediated and direct coupling in time domain.
Fig. 3
Fig. 3 The equivalent current densities for the mediated and direct coupling. The inset is the spectra of SPPs based on the equivalent current and the electron beam.
Fig. 4
Fig. 4 (a): The dispersion curves of the SSPs mediated coupling of SPPs for multilayers, and the inset is the schematic of this mediated coupling; (b): PIC results of the mediated coupling for multilayers, and the inset is the contour map at the working point C (818 THz).
Fig. 5
Fig. 5 (a): The photo densities of the mediated and direct couplings; (b) and (c): The contour maps of the mediately coupled SPPs in the multilayers.
Fig. 6
Fig. 6 (a) The photo density vs. metal layer number; (b) The photo density vs. layer gap.
Fig. 7
Fig. 7 (a) The photo density vs. permitivitty of dielectric layer; (b) The spectra of the mediately coupled SPPs.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

( a D n [ j k 0 ε 3 k 3 n η ] χ n sin c 2 k z n a 2 ) ε 0 μ 0 ( a D n [ j k 0 ε 1 k 1 n η ] sin c 2 k z n a 2 ) ε 0 μ 0 e j 2 k 0 d 2 e j 2 k 0 d 1 = ( a D n [ j k 0 ε 3 k 3 n η ] χ n sin c 2 k z n a 2 ) + ε 0 μ 0 ( a D n [ j k 0 ε 1 k 1 n η ] sin c 2 k z n a 2 ) + ε 0 μ 0
χ n = ( η S P P s e k 3 n d η S S P s e k 3 n d ) / ( η S P P s e k 3 n d + η S S P s e k 3 n d )
η S P P s = ( ε 4 k 5 n ε 5 k 4 n ) ( ε 3 k 4 n + ε 4 k 3 n ) e k 4 n d 3 ( ε 4 k 5 n + ε 5 k 4 n ) ( ε 3 k 4 n ε 4 k 3 n ) e k 4 n d 3 ,
η S S P s = ( ε 4 k 5 n ε 5 k 4 n ) ( ε 3 k 4 n ε 4 k 3 n ) e k 4 n d 3 + ( ε 4 k 5 n + ε 5 k 4 n ) ( ε 3 k 4 n + ε 4 k 3 n ) e k 4 n d 3 .
( E S P P s ) z = a D ( E 2 a e j k 0 d 2 + E 2 b e j k 0 d 2 ) n ( sin c k z n a 2 η S P P s e k 3 n d 3 η S P P s e k 3 n d 3 + η S S P s e k 3 n d 3 e k 3 n y e j k z n z ) e j ω t
E 2 a = ( a D n [ j k 0 ε 3 k 3 n η ] χ n sin c 2 k z n a 2 + ε 0 μ 0 ) e j k 0 d 2 ( [ j k 0 ε 1 k 1 n η ] n = 0 E e 0 sin c k z 0 a 2 H e 0 ) ζ 1
E 2 b = ( a D n [ j k 0 ε 3 k 3 n η ] χ n sin c 2 k z n a 2 ε 0 μ 0 ) e j k 0 d 2 ( [ j k 0 ε 1 k 1 n η ] n = 0 E e 0 sin c k z 0 a 2 H e 0 ) ζ 1
ζ = ( + ( a D n [ j k 0 ε 1 k 1 n η ] sin c 2 k z n a 2 + ε 0 μ 0 ) ( a D n [ j k 0 ε 3 k 3 n η ] χ n sin c 2 k z n a 2 ε 0 μ 0 ) e j k 0 h ( a D n [ j k 0 ε 3 k 3 n η ] χ n sin c 2 k z n a 2 + ε 0 μ 0 ) ( a D n [ j k 0 ε 1 k 1 n η ] sin c 2 k z n a 2 ε 0 μ 0 ) e j k 0 h ) ,
S ( J S S P s e f f ) d S = l n [ j k 0 ε 3 k 3 n η ] ( E S P P s ) z d l
N S P P s = 1 2 ω ( E S P P s × H S P P s ) d S

Metrics